IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5672-d880448.html
   My bibliography  Save this article

Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades

Author

Listed:
  • Wenjie Wang

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Yu Xue

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Chengkuan He

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

  • Yongnian Zhao

    (College of Engineering, Ocean University of China, Qingdao 266100, China)

Abstract

With global warming and the depletion of fossil energy sources, renewable energy is gradually replacing non-renewable energy as the main energy in the future. As one of the fastest growing renewable energy sources, the safety and reliability of wind energy have been paid more and more attention. The size of modern wind turbines is becoming larger and larger. As the main component of wind turbines to capture energy, the blade is often damaged by various complex environments and irregular loads. Therefore, the health monitoring and damage identification of wind turbine blades have become a main research focus. At present, in addition to the overview of various detection methods of wind turbine blades, there is a lack of comprehensive classifications and overviews of the main damage types, damage-generation mechanisms, and basic principles of the damage-detection technology of wind turbine blades. In this paper, firstly, the common fault types of wind turbine blades, such as trailing edge cracking, lightning strike, leading edge corrosion pollution, icing, and delamination, as well as their generation mechanism, are comprehensively analyzed. Then, the basic principles and the latest research progress of the current main detection technologies, such as vision, ultrasonic, thermal imaging, vibration, acoustic emission, and so on, are comprehensively reviewed. The advantages and limitations of the various detection technologies for practical application are summarized. Finally, through a comparative analysis of the various damage-detection technologies, we try to find potential future research directions, and draw conclusions. This paper will provide a reference for understanding the mechanism behind the main damage types and the damage-detection methods of wind turbine blades. It has important reference value for further promoting practical research of wind turbine blade damage-detection technology and grasping this research direction.

Suggested Citation

  • Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5672-:d:880448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dollinger, Christoph & Balaresque, Nicholas & Gaudern, Nicholas & Gleichauf, Daniel & Sorg, Michael & Fischer, Andreas, 2019. "IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition," Renewable Energy, Elsevier, vol. 138(C), pages 709-721.
    2. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    3. ASM Shihavuddin & Xiao Chen & Vladimir Fedorov & Anders Nymark Christensen & Nicolai Andre Brogaard Riis & Kim Branner & Anders Bjorholm Dahl & Rasmus Reinhold Paulsen, 2019. "Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis," Energies, MDPI, vol. 12(4), pages 1-15, February.
    4. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    5. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    6. Haselbach, P.U. & Bitsche, R.D. & Branner, K., 2016. "The effect of delaminations on local buckling in wind turbine blades," Renewable Energy, Elsevier, vol. 85(C), pages 295-305.
    7. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    8. Tang, Jialin & Soua, Slim & Mares, Cristinel & Gan, Tat-Hean, 2016. "An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades," Renewable Energy, Elsevier, vol. 99(C), pages 170-179.
    9. Ozbek, Muammer & Rixen, Daniel J. & Erne, Oliver & Sanow, Gunter, 2010. "Feasibility of monitoring large wind turbines using photogrammetry," Energy, Elsevier, vol. 35(12), pages 4802-4811.
    10. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    11. Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
    12. Yang, Jinshui & Peng, Chaoyi & Xiao, Jiayu & Zeng, Jingcheng & Yuan, Yun, 2012. "Application of videometric technique to deformation measurement for large-scale composite wind turbine blade," Applied Energy, Elsevier, vol. 98(C), pages 292-300.
    13. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    14. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    15. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    16. Gustave P. Corten & Herman F. Veldkamp, 2001. "Insects can halve wind-turbine power," Nature, Nature, vol. 412(6842), pages 41-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunsheng Hu & Yong Zhao & Fangjuan Cheng & Zhiping Li, 2023. "Multi-Object Detection Algorithm in Wind Turbine Nacelles Based on Improved YOLOX-Nano," Energies, MDPI, vol. 16(3), pages 1-13, January.
    2. Yuan Yao & Guozhong Wang & Jinhui Fan, 2023. "WT-YOLOX: An Efficient Detection Algorithm for Wind Turbine Blade Damage Based on YOLOX," Energies, MDPI, vol. 16(9), pages 1-15, April.
    3. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Verma, Amrit Shankar & Yan, Jiquan & Hu, Weifei & Jiang, Zhiyu & Shi, Wei & Teuwen, Julie J.E., 2023. "A review of impact loads on composite wind turbine blades: Impact threats and classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    4. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
    5. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    7. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    8. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    9. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    10. Mikkel Schou Nielsen & Ivan Nikolov & Emil Krog Kruse & Jørgen Garnæs & Claus Brøndgaard Madsen, 2020. "High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness," Energies, MDPI, vol. 13(15), pages 1-17, July.
    11. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    12. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    13. Andrius Kulsinskas & Petar Durdevic & Daniel Ortiz-Arroyo, 2021. "Internal Wind Turbine Blade Inspections Using UAVs: Analysis and Design Issues," Energies, MDPI, vol. 14(2), pages 1-19, January.
    14. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    16. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    17. Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
    18. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    19. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    20. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5672-:d:880448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.