IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4489-d843250.html
   My bibliography  Save this article

Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure

Author

Listed:
  • Mona Faraji Niri

    (Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK
    The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK)

  • Jimiama Mafeni Mase

    (Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK
    The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK)

  • James Marco

    (Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK
    The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK)

Abstract

Li-ion batteries play a critical role in the transition to a net-zero future. The discovery of new materials and the design of novel microstructures for battery electrodes is necessary for the acceleration of this transition. The battery electrode microstructure can potentially reveal the cells’ electrochemical characteristics in great detail. However, revealing this relation is very challenging due to the high dimensionality of the problem and the large number of microstructure features. In fact, it cannot be achieved via the traditional trial-and-error approaches, which are associated with significant cost, time, and resource waste. In search for a systematic microstructure analysis and design method, this paper aims at quantifying the Li-ion battery electrode structural characteristics via deep learning models. Deliberately, here, a methodology and framework are developed to reveal the hidden microstructure characteristics via 2D and 3D images through dimensionality reduction. The framework is based on an auto-encoder decoder for microstructure reconstruction and feature extraction. Unlike most of the existing studies that focus on a limited number of features extracted from images, this study concentrates directly on the images and has the potential to define the number of features to be extracted. The proposed methodology and model are computationally effective and have been tested on a real open-source dataset where the results show the efficiency of reconstruction and feature extraction based on the training and validation mean squared errors between 0.068 and 0.111 and from 0.071 to 0.110, respectively. This study is believed to guide Li-ion battery scientists and manufacturers in the design and production of next generation Li-ion cells in a systematic way by correlating the extracted features at the microstructure level and the cell’s electrochemical characteristics.

Suggested Citation

  • Mona Faraji Niri & Jimiama Mafeni Mase & James Marco, 2022. "Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure," Energies, MDPI, vol. 15(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4489-:d:843250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.
    2. Yang Zhang & Bo Guo, 2015. "Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine," Energies, MDPI, vol. 8(11), pages 1-19, November.
    3. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    4. Sungwoo Jo & Sunkyu Jung & Taemoon Roh, 2021. "Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
    7. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
    3. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    5. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    6. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    9. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    10. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    11. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    12. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    13. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
    14. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    15. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    16. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    17. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    18. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    19. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    20. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    21. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4489-:d:843250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.