IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4472-d842705.html
   My bibliography  Save this article

Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review

Author

Listed:
  • Ismail Marouani

    (Control and Energy Management Laboratory, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Tawfik Guesmi

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia)

  • Hsan Hadj Abdallah

    (Control and Energy Management Laboratory, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Badr M. Alshammari

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia)

  • Khalid Alqunun

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia)

  • Ahmed S. Alshammari

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia)

  • Salem Rahmani

    (Research Laboratory of Biophysics and Medical Technology (BMT), Higher Institute of Medical Technologies, University of Tunis El-Manar, Tunis 2092, Tunisia)

Abstract

Combined economic emission dispatch (CEED) problems are among the most crucial problems in electrical power systems. The purpose of the CEED is to plan the outputs of all production units available in the electrical power system in such a way that the cost of fuel and polluted emissions are minimized while respecting the equality and inequality constraints of the system and efficiently responding to the power load required. The rapid depletion of these sources causes limitation and increases the price of fuel. It is therefore very important that scientific research in the last few decades has been oriented toward the integration of renewable energy systems (RES) such as wind and PV as an alternative source. Furthermore, the CEED problem including RES is the most important problem with regard to electrical power field optimization. In this study, a classification of optimization techniques that are widely used, such as traditional methods, non-conventional methods, and hybrid methods, is summarized. Many optimization methods have been presented and each of them has its own advantages and disadvantages for solving this complex CEED problem, including renewable energy. A review of different optimization techniques for solving this CEED problem is explored in this present paper. This review will encourage researchers in the future to gain knowledge of the best approaches applicable to solve CEED problems for practical electrical systems.

Suggested Citation

  • Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4472-:d:842705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Jiejin & Li, Qiong & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2012. "A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects," Energy, Elsevier, vol. 38(1), pages 346-353.
    2. Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    3. Shilaja, C. & Ravi, K., 2017. "Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation," Renewable Energy, Elsevier, vol. 107(C), pages 550-566.
    4. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    5. Abdelaziz, A.Y. & Ali, E.S. & Abd Elazim, S.M., 2016. "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems," Energy, Elsevier, vol. 101(C), pages 506-518.
    6. Fraga, Eric S. & Yang, Lingjian & Papageorgiou, Lazaros G., 2012. "On the modelling of valve point loadings for power electricity dispatch," Applied Energy, Elsevier, vol. 91(1), pages 301-303.
    7. F. Daniel Santillán-Lemus & Hertwin Minor-Popocatl & Omar Aguilar-Mejía & Ruben Tapia-Olvera, 2019. "Optimal Economic Dispatch in Microgrids with Renewable Energy Sources," Energies, MDPI, vol. 12(1), pages 1-14, January.
    8. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    9. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    10. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    11. Kuo, Cheng-Chien, 2010. "Wind energy dispatch considering environmental and economic factors," Renewable Energy, Elsevier, vol. 35(10), pages 2217-2227.
    12. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    13. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    14. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    15. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    16. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    17. K. Chandrasekaran & Sishaj P. Simon, 2014. "Wind-Thermal Integrated Power System Scheduling Problem Using Cuckoo Search Algorithm," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 5(3), pages 81-109, July.
    18. Jubril, A.M. & Olaniyan, O.A. & Komolafe, O.A. & Ogunbona, P.O., 2014. "Economic-emission dispatch problem: A semi-definite programming approach," Applied Energy, Elsevier, vol. 134(C), pages 446-455.
    19. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.
    2. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    2. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    3. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    4. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    5. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    6. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    7. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    8. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    10. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    11. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    12. Zhang, Xian & Wang, Huaizhi & Peng, Jian-chun & Liu, Yitao & Wang, Guibin & Jiang, Hui, 2018. "GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration," Energy, Elsevier, vol. 144(C), pages 404-419.
    13. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    14. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    15. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    16. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    17. Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Alberto Pliego Marugán & Fausto Pedro García Márquez, 2021. "A Hybrid Jaya–Powell’s Pattern Search Algorithm for Multi-Objective Optimal Power Flow Incorporating Distributed Generation," Energies, MDPI, vol. 14(10), pages 1-24, May.
    18. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    19. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    20. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4472-:d:842705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.