IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4305-d837028.html
   My bibliography  Save this article

Wind Power Potential in Highlands of the Bolivian Andes: A Numerical Approach

Author

Listed:
  • Rober Mamani

    (Aero-Thermo-Mechanics, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50, CP 165/41, 1050 Brussels, Belgium
    Centro Universitario de Investigaciones en Energia, San Simon University, 2500 Cochabamba, Bolivia)

  • Patrick Hendrick

    (Aero-Thermo-Mechanics, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50, CP 165/41, 1050 Brussels, Belgium)

Abstract

Wind resource assessment is a key factor for the development and implementation of wind farms with the purpose of generating green, eco-friendly and clean electricity. The Bolivian Andes, as a large dry region, represents an important source of renewable energy. However, the altitude and high wind energy resources of the Bolivian Andes require further knowledge and understanding of the wind energy resources. In this study, the GWA have been used to determine the total area available to install wind farms considering the protected areas, roads, cities and transmission lines. In addition, the Weather Research and Forecasting (WRF v3.8.1) model is employed to complement the results of the GWA based on the validation of WRF simulations with measurements from Qollpana wind farm. The main purpose is to estimate the wind power potential along the Bolivian Andes and its variability in time. The wind power simulations have been compared with the power generated by the Qollpana wind farm to verify the WRF’s performance. The wind power potential in the highlands of the Bolivian Andes could reach between 225 (WRF) and 277 (GWA) GW, distributed mainly over the Western and Eastern Cordillera of the Altiplano.

Suggested Citation

  • Rober Mamani & Patrick Hendrick, 2022. "Wind Power Potential in Highlands of the Bolivian Andes: A Numerical Approach," Energies, MDPI, vol. 15(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4305-:d:837028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balderrama, Sergio & Lombardi, Francesco & Stevanato, Nicolo & Peña, Gabriela & Colombo, Emanuela & Quoilin, Sylvain, 2021. "Surrogate models for rural energy planning: Application to Bolivian lowlands isolated communities," Energy, Elsevier, vol. 232(C).
    2. Julien Garcia Arenas & Patrick Hendrick & Pierre Henneaux, 2022. "Optimisation of Integrated Systems: The Potential of Power and Residential Heat Sectors Coupling in Decarbonisation Strategies," Energies, MDPI, vol. 15(7), pages 1-16, April.
    3. Viviescas, Cindy & Lima, Lucas & Diuana, Fabio A. & Vasquez, Eveline & Ludovique, Camila & Silva, Gabriela N. & Huback, Vanessa & Magalar, Leticia & Szklo, Alexandre & Lucena, André F.P. & Schaeffer, , 2019. "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
    5. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    6. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    7. Carvalho, D. & Rocha, A. & Santos, C. Silva & Pereira, R., 2013. "Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques," Applied Energy, Elsevier, vol. 108(C), pages 493-504.
    8. Alessandro Morabito & Jan Spriet & Elena Vagnoni & Patrick Hendrick, 2020. "Underground Pumped Storage Hydropower Case Studies in Belgium: Perspectives and Challenges," Energies, MDPI, vol. 13(15), pages 1-24, August.
    9. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    10. Marco Navia & Renan Orellana & Sulmayra Zaráte & Mauricio Villazón & Sergio Balderrama & Sylvain Quoilin, 2022. "Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System," Energies, MDPI, vol. 15(3), pages 1-35, January.
    11. Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
    12. Alemán-Nava, Gibrán S. & Casiano-Flores, Victor H. & Cárdenas-Chávez, Diana L. & Díaz-Chavez, Rocío & Scarlat, Nicolae & Mahlknecht, Jürgen & Dallemand, Jean-Francois & Parra, Roberto, 2014. "Renewable energy research progress in Mexico: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 140-153.
    13. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Jose V. Taboada & Vicente Diaz-Casas & Xi Yu, 2021. "Reliability and Maintenance Management Analysis on OffShore Wind Turbines (OWTs)," Energies, MDPI, vol. 14(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    2. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    3. Gil Ruiz, Samuel Andrés & Cañón Barriga, Julio Eduardo & Martínez, J. Alejandro, 2022. "Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia," Energy, Elsevier, vol. 244(PB).
    4. Mateusz Rzeszutek & Adriana Kłosowska & Robert Oleniacz, 2023. "Accuracy Assessment of WRF Model in the Context of Air Quality Modeling in Complex Terrain," Sustainability, MDPI, vol. 15(16), pages 1-27, August.
    5. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    7. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    8. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    9. Debnath, R. & Bardhan, R. & Darby, S. & Mohaddes, K. & Sunikka-Blank, M. & Coelho, A C V. & Isa, A., 2020. "A deep-narrative analysis of energy cultures in slum rehabilitation housing of Abuja, Mumbai and Rio de Janeiro for just policy design," Cambridge Working Papers in Economics 20101, Faculty of Economics, University of Cambridge.
    10. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    11. Hopkins, Debbie & Stephenson, Janet, 2014. "Generation Y mobilities through the lens of energy cultures: a preliminary exploration of mobility cultures," Journal of Transport Geography, Elsevier, vol. 38(C), pages 88-91.
    12. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    14. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    15. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    16. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    17. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    18. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    19. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    20. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4305-:d:837028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.