IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3704-d818562.html
   My bibliography  Save this article

The Thermal Response of a Packed Bed Thermal Energy Storage System upon Saturated Steam Injection Using Distributed Temperature Sensing

Author

Listed:
  • Zayed Ahmed

    (Department of Mechanical & Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA)

  • Alina Constantin

    (International Atomic Energy Agency, 1400 Vienna, Austria)

  • Hitesh Bindra

    (Department of Mechanical & Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA)

Abstract

The effectiveness of a thermal energy storage (TES) system is typically characterized with the help of thermal stratification or temperature gradients along the direction of heat injection, which is typically the flow direction of heat transfer fluid. The steepness of temperature gradients are a direct indicator of the effectiveness or efficiency of the heat storage or dispatch process. The temperature gradient evolution along the packed bed of ceramic particles upon saturated steam injection is presented in this work. Distributed temperature sensing based on optical frequency domain reflectometry was deployed in a packed bed of ceramic particles to capture the thermal front evolution in the axial direction. The physical processes accompanying steam injection in packed beds are complex due to phase change, transitioning two-phase flow, and changes in condensate accumulation. Therefore, the variation of thermal response of the TES system for various steam injection flow rates was experimentally studied using a high-resolution distributed temperature sensing system in a chemically inert alumina particle-packed bed. Distinct zones of different heat transfer modes were observed during the steam injection experiments. A distinct conduction zone, evident from diffuse thermal fronts, was observed at low flow rates, and these thermal gradients became sharper as the flow rate increased. The diffuse thermal fronts in the heat storage media suggest a low exergy efficiency of the TES system, as energy losses started initiating before a significant fraction of the bed was saturated with steam.

Suggested Citation

  • Zayed Ahmed & Alina Constantin & Hitesh Bindra, 2022. "The Thermal Response of a Packed Bed Thermal Energy Storage System upon Saturated Steam Injection Using Distributed Temperature Sensing," Energies, MDPI, vol. 15(10), pages 1-10, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3704-:d:818562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Ryan & Shiri, Samira & Bindra, Hitesh & Morris, Jeffrey F., 2014. "Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles," Applied Energy, Elsevier, vol. 119(C), pages 521-529.
    2. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    2. Shao, Wei & Cui, Zheng & Chen, Zhao-you & Wang, Jing-chen & Liu, Yu & Ren, Xiao-han & Luo, Feng, 2019. "Experimental and numerical measurements of the channel packed with disordered cement granules regarding the heat transfer performance," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    4. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    5. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    7. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    9. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    10. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).
    11. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    12. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    13. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    14. Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
    15. Heydarzadeh, Zahra & Mac Kinnon, Michael & Thai, Clinton & Reed, Jeff & Brouwer, Jack, 2020. "Marginal methane emission estimation from the natural gas system," Applied Energy, Elsevier, vol. 277(C).
    16. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    17. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    18. Giordano, Nicolò & Raymond, Jasmin, 2019. "Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    20. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3704-:d:818562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.