IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3618-d816055.html
   My bibliography  Save this article

Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems

Author

Listed:
  • Ekaterina Sokolova

    (Department of Atomic and Heat- and -Power Engineering, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Khashayar Sadeghi

    (Department of Atomic and Heat- and -Power Engineering, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Seyed Hadi Ghazaie

    (Department of Atomic and Heat- and -Power Engineering, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Dario Barsi

    (Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, I-16145 Genova, Italy)

  • Francesca Satta

    (Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, I-16145 Genova, Italy)

  • Pietro Zunino

    (Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, I-16145 Genova, Italy)

Abstract

Nowadays, several technologies for desalination processes are available and widely employed. However, they consume a considerable amount of energy and involve high capital and operating costs. Therefore, the techno-economic analysis of a system coupling different energy sources with the desalination processes is of value. The possibility of coupling a small gas turbine combined heat and power system (GT CHP) with hybrid desalination plants (HDPs) has been assessed in this study. The proposed gas turbine power generation system, based on a single-stage centrifugal compressor and an uncooled centripetal turbine, provides design simplicity and reasonable installation costs for the power generating plant. The hybrid desalination technique, based on the use of two different desalination technologies, i.e., Reverse Osmosis (RO) and a thermal desalination process, has been chosen to better exploit the electrical and thermal energy produced by the mini CHP plant. The proposed solution is numerically investigated from both thermodynamic and economic points of view, and the results of the thermodynamic analysis of the cycle are used as input for the evaluation of the amount of freshwater produced and of costs. The economic assessment of standalone desalination systems is also shown for the comparison with the hybrid solutions here proposed. Results show that the total cost of the water produced by MED + RO was less than the total cost of the water obtained by MSF + RO, and that the energy cost of MED + RO hybrid desalination system was about 15% less than that for stand-alone RO desalination technology. Thus, the MED + RO hybrid desalination system can be considered a promising solution for the coupling with the proposed mini GT CHP plant, which, due to the small size and cost, as well as the easy installation, can be easily applied in off-grid or remote areas.

Suggested Citation

  • Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3618-:d:816055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    2. Gil Azinheira & Raquel Segurado & Mário Costa, 2019. "Is Renewable Energy-Powered Desalination a Viable Solution for Water Stressed Regions? A Case Study in Algarve, Portugal," Energies, MDPI, vol. 12(24), pages 1-18, December.
    3. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    4. Michael Castro & Myron Alcanzare & Eugene Esparcia & Joey Ocon, 2020. "A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands," Energies, MDPI, vol. 13(9), pages 1-25, May.
    5. Alessandro Corsini & Eileen Tortora, 2018. "Sea-Water Desalination for Load Levelling of Gen-Sets in Small Off-Grid Islands," Energies, MDPI, vol. 11(8), pages 1-18, August.
    6. Kawtar Rahaoui & Hamid Khayyam & Quoc Linh Ve & Aliakbar Akbarzadeh & Abhijit Date, 2021. "Renewable Thermal Energy Driven Desalination Process for a Sustainable Management of Reverse Osmosis Reject Water," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    7. Guillermo Fernández-Gil & Fontina Petrakopoulou, 2019. "Sustainable Water Generation on a Mediterranean Island in Greece," Energies, MDPI, vol. 12(22), pages 1-17, November.
    8. Gowtham Mohan & Sujata Dahal & Uday Kumar & Andrew Martin & Hamid Kayal, 2014. "Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis," Energies, MDPI, vol. 7(10), pages 1-24, October.
    9. Angelica Liponi & Claretta Tempesti & Andrea Baccioli & Lorenzo Ferrari, 2020. "Small-Scale Desalination Plant Driven by Solar Energy for Isolated Communities," Energies, MDPI, vol. 13(15), pages 1-16, July.
    10. Seyed Hadi Ghazaie & Khashayar Sadeghi & Ekaterina Sokolova & Evgeniy Fedorovich & Amirsaeed Shirani, 2020. "Comparative Analysis of Hybrid Desalination Technologies Powered by SMR," Energies, MDPI, vol. 13(19), pages 1-17, September.
    11. Dario Barsi & Matteo Luzzi & Francesca Satta & Pietro Zunino, 2021. "On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation," Energies, MDPI, vol. 14(3), pages 1-12, January.
    12. Ighball Baniasad Askari & Francesco Calise & Maria Vicidomini, 2019. "Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production," Energies, MDPI, vol. 12(22), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramon Francesconi & Matteo Luzzi & Dario Barsi & Francesca Satta & Fabrizio Stefani & Pietro Zunino, 2022. "Preliminary Design of a Mini Gas Turbine via 1D Methodology," Energies, MDPI, vol. 15(21), pages 1-18, November.
    2. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Castro & Myron Alcanzare & Eugene Esparcia & Joey Ocon, 2020. "A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands," Energies, MDPI, vol. 13(9), pages 1-25, May.
    2. Nicolás Velázquez-Limón & Ricardo López-Zavala & Luis Hernández-Callejo & Jesús A. Aguilar-Jiménez & Sara Ojeda-Benítez & Juan Ríos-Arriola, 2020. "Study of a Hybrid Solar Absorption-Cooling and Flash-Desalination System," Energies, MDPI, vol. 13(15), pages 1-18, August.
    3. Mingwei Yan & Yuetao Shi, 2020. "Thermal and Economic Analysis of Multi-Effect Concentration System by Utilizing Waste Heat of Flue Gas for Magnesium Desulfurization Wastewater," Energies, MDPI, vol. 13(20), pages 1-20, October.
    4. Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.
    5. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    6. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    7. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    8. James Hamilton & Michael Negnevitsky & Xiaolin Wang & Evgenii Semshchikov, 2020. "The Role of Low-Load Diesel in Improved Renewable Hosting Capacity within Isolated Power Systems," Energies, MDPI, vol. 13(16), pages 1-15, August.
    9. Hossein Yousefi & Mohamad Aramesh & Bahman Shabani, 2021. "Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization," Energies, MDPI, vol. 14(2), pages 1-23, January.
    10. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    11. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    12. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    13. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    14. Zein, Adnan & Karaki, Sami & Al-Hindi, Mahmoud, 2023. "Analysis of variable reverse osmosis operation powered by solar energy," Renewable Energy, Elsevier, vol. 208(C), pages 385-398.
    15. Jing Chen & Chenghui Zhang & Ke Li & Yuedong Zhan & Bo Sun, 2020. "Hybrid Adaptive Control for PEMFC Gas Pressure," Energies, MDPI, vol. 13(20), pages 1-13, October.
    16. Mohan, Gowtham & Uday Kumar, N.T. & Pokhrel, Manoj Kumar & Martin, Andrew, 2016. "Experimental investigation of a novel solar thermal polygeneration plant in United Arab Emirates," Renewable Energy, Elsevier, vol. 91(C), pages 361-373.
    17. Mohan, Gowtham & Kumar, Uday & Pokhrel, Manoj Kumar & Martin, Andrew, 2016. "A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation," Applied Energy, Elsevier, vol. 167(C), pages 173-188.
    18. Batista, Natasha E. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2023. "Optimizing methodologies of hybrid renewable energy systems powered reverse osmosis plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    20. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2019. "Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors," Renewable Energy, Elsevier, vol. 137(C), pages 109-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3618-:d:816055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.