IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2381-d541474.html
   My bibliography  Save this article

Comparison of Biological Efficiency Assessment Methods and Their Application to Full-Scale Biogas Plants

Author

Listed:
  • Benedikt Hülsemann

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany)

  • Torsten Mächtig

    (Institute of Agricultural Engineering, Kiel University, Olshausenstraße 40, 24098 Kiel, Germany)

  • Marcel Pohl

    (DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, 04347 Leipzig, Germany)

  • Jan Liebetrau

    (Rytec GmbH, Consulting and Research, Pariser Ring 37, 76532 Baden-Baden, Germany)

  • Joachim Müller

    (Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70599 Stuttgart, Germany)

  • Eberhard Hartung

    (Institute of Agricultural Engineering, Kiel University, Olshausenstraße 40, 24098 Kiel, Germany)

  • Hans Oechsner

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany)

Abstract

For calculation of biological efficiency of a biogas plant (BP), it is required to determine the specific methane potential (SMP) of the substrate. A study comparing available methods for determination of SMP and the comparison with data of full-scale BPs is missing but necessary according to the differences in process conditions between both. Firstly, mass and mass associated energy balances of 33 full-scale BPs were calculated and evaluated. The results show plausible data for only 55% of the investigated BPs. Furthermore, conversion and yield efficiencies were calculated according to six different methods for SMP determination. The results show a correlation between the measured on-site specific methane yield and the calculated SMP by methods based on biological degradability. However, these methods underestimate the SMP. Calculated SMPs based on calorific values are higher, but less sensitive. A combination of biochemical and energetical methods is a promising approach to evaluate the efficiency.

Suggested Citation

  • Benedikt Hülsemann & Torsten Mächtig & Marcel Pohl & Jan Liebetrau & Joachim Müller & Eberhard Hartung & Hans Oechsner, 2021. "Comparison of Biological Efficiency Assessment Methods and Their Application to Full-Scale Biogas Plants," Energies, MDPI, vol. 14(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2381-:d:541474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    2. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    3. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    2. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    3. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    4. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    5. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    6. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    7. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    8. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.
    9. Jin, Yiying & Chen, Ting & Chen, Xin & Yu, Zhixin, 2015. "Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant," Applied Energy, Elsevier, vol. 151(C), pages 227-236.
    10. Fierro, Julio & Gómez, Xiomar & Murphy, Jerry D., 2014. "What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain?," Applied Energy, Elsevier, vol. 114(C), pages 783-789.
    11. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    12. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    13. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    14. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    15. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Yan Bai & Xingyi Ma & Jing Zhang & Lei Zhang & Jing Bai, 2024. "Energy Efficiency Assessment and Prediction Based on Indicator System, PSO + AHP − FCE Model and Regression Algorithm," Energies, MDPI, vol. 17(8), pages 1-23, April.
    17. Zeb, Iftikhar & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Ndegwa, Pius & Yao, Yiqing & Kafle, Gopi Krishna, 2017. "Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure," Energy, Elsevier, vol. 119(C), pages 1144-1151.
    18. Anna Lymperatou & Niels B. Rasmussen & Hariklia N. Gavala & Ioannis V. Skiadas, 2021. "Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects," Energies, MDPI, vol. 14(3), pages 1-16, February.
    19. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    20. Li, Heng & Chen, Zheng & Fu, Dun & Wang, Yuanpeng & Zheng, Yanmei & Li, Qingbiao, 2020. "Improved ADM1 for modelling C, N, P fates in anaerobic digestion process of pig manure and optimization approaches to biogas production," Renewable Energy, Elsevier, vol. 146(C), pages 2330-2336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2381-:d:541474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.