IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8084-d693930.html
   My bibliography  Save this article

Accessible Modeling of the German Energy Transition: An Open, Compact, and Validated Model

Author

Listed:
  • Julia Barbosa

    (Energy Information Networks & Systems, Technical University Darmstadt, 64283 Darmstadt, Germany)

  • Christopher Ripp

    (Energy Information Networks & Systems, Technical University Darmstadt, 64283 Darmstadt, Germany)

  • Florian Steinke

    (Energy Information Networks & Systems, Technical University Darmstadt, 64283 Darmstadt, Germany)

Abstract

We present an easily accessible model for dispatch and expansion planning of the German multi-modal energy system from today until 2050. The model can be used with low efforts while comparing favorably with historic data and other studies of future developments. More specifically, the model is based on a linear programming partial equilibrium framework and uses a compact set of technologies to ease the comprehension for new modelers. It contains all equations and parameters needed, with the data sources and model assumptions documented in detail. All code and data are openly accessible and usable. The model can reproduce today’s energy mix and its CO 2 emissions with deviations below 10%. The generated energy transition path, for an 80% CO 2 reduction scenario until 2050, is consistent with leading studies on this topic. Our work thus summarizes the key insights of previous works and can serve as a validated and ready-to-use platform for other modelers to examine additional hypotheses.

Suggested Citation

  • Julia Barbosa & Christopher Ripp & Florian Steinke, 2021. "Accessible Modeling of the German Energy Transition: An Open, Compact, and Validated Model," Energies, MDPI, vol. 14(23), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8084-:d:693930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pfenninger, Stefan & Hirth, Lion & Schlecht, Ingmar & Schmid, Eva & Wiese, Frauke & Brown, Tom & Davis, Chris & Gidden, Matthew & Heinrichs, Heidi & Heuberger, Clara & Hilpert, Simon & Krien, Uwe & Ma, 2018. "Opening the black box of energy modelling: Strategies and lessons learned," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19, pages 63-71.
    2. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    3. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    4. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    5. Van der Voort, E, 1982. "The EFOM 12C energy supply model within the EC modelling system," Omega, Elsevier, vol. 10(5), pages 507-523.
    6. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    7. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    8. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Hülsmann & Julia Barbosa & Florian Steinke, 2023. "Local Interpretable Explanations of Energy System Designs," Energies, MDPI, vol. 16(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    2. Jens Weibezahn & Mario Kendziorski, 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language," Energies, MDPI, vol. 12(6), pages 1-21, March.
    3. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    4. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    6. Weber, Juliane & Heinrichs, Heidi Ursula & Gillessen, Bastian & Schumann, Diana & Hörsch, Jonas & Brown, Tom & Witthaut, Dirk, 2019. "Counter-intuitive behaviour of energy system models under CO2 caps and prices," Energy, Elsevier, vol. 170(C), pages 22-30.
    7. Alberto Vargiu & Riccardo Novo & Claudio Moscoloni & Enrico Giglio & Giuseppe Giorgi & Giuliana Mattiazzo, 2022. "An Energy Cost Assessment of Future Energy Scenarios: A Case Study on San Pietro Island," Energies, MDPI, vol. 15(13), pages 1-23, June.
    8. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    9. Lerede, D. & Bustreo, C. & Gracceva, F. & Saccone, M. & Savoldi, L., 2021. "Techno-economic and environmental characterization of industrial technologies for transparent bottom-up energy modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Dall-Orsoletta, Alaize & Romero, Fernando & Ferreira, Paula, 2022. "Open and collaborative innovation for the energy transition: An exploratory study," Technology in Society, Elsevier, vol. 69(C).
    11. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    12. Candas, Soner & Muschner, Christoph & Buchholz, Stefanie & Bramstoft, Rasmus & van Ouwerkerk, Jonas & Hainsch, Karlo & Löffler, Konstantin & Günther, Stephan & Berendes, Sarah & Nguyen, Stefanie & Jus, 2022. "Code exposed: Review of five open-source frameworks for modeling renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    14. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.
    15. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    16. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    17. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Germeshausen, Robert & Wölfing, Nikolas, 2019. "How marginal is lignite? Two simple approaches to determine price-setting technologies in power markets," ZEW Discussion Papers 19-031, ZEW - Leibniz Centre for European Economic Research.
    20. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8084-:d:693930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.