IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5384-d625112.html
   My bibliography  Save this article

Improving the Energy Efficiency of Buildings Based on Fluid Dynamics Models: A Critical Review

Author

Listed:
  • Xiaoshu Lü

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Department of Electrical Engineering and Energy Technology, University of Vaasa, 65200 Vaasa, Finland
    Department of Civil Engineering, Aalto University, 02130 Espoo, Finland)

  • Tao Lu

    (Department of Electrical Engineering and Energy Technology, University of Vaasa, 65200 Vaasa, Finland)

  • Tong Yang

    (Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK)

  • Heidi Salonen

    (Department of Civil Engineering, Aalto University, 02130 Espoo, Finland)

  • Zhenxue Dai

    (College of Construction Engineering, Jilin University, Changchun 130026, China)

  • Peter Droege

    (LISD—Berlin I Liechtenstein Institute for Strategic Development GmbH, 9490 Vaduz, Liechtenstein)

  • Hongbing Chen

    (School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

Abstract

The built environment is the global sector with the greatest energy use and greenhouse gas emissions. As a result, building energy savings can make a major contribution to tackling the current energy and climate change crises. Fluid dynamics models have long supported the understanding and optimization of building energy systems and have been responsible for many important technological breakthroughs. As Covid-19 is continuing to spread around the world, fluid dynamics models are proving to be more essential than ever for exploring airborne transmission of the coronavirus indoors in order to develop energy-efficient and healthy ventilation actions against Covid-19 risks. The purpose of this paper is to review the most important and influential fluid dynamics models that have contributed to improving building energy efficiency. A detailed, yet understandable description of each model’s background, physical setup, and equations is provided. The main ingredients, theoretical interpretations, assumptions, application ranges, and robustness of the models are discussed. Models are reviewed with comprehensive, although not exhaustive, publications in the literature. The review concludes by outlining open questions and future perspectives of simulation models in building energy research.

Suggested Citation

  • Xiaoshu Lü & Tao Lu & Tong Yang & Heidi Salonen & Zhenxue Dai & Peter Droege & Hongbing Chen, 2021. "Improving the Energy Efficiency of Buildings Based on Fluid Dynamics Models: A Critical Review," Energies, MDPI, vol. 14(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5384-:d:625112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Di & Meneveau, Charles & Shen, Lian, 2014. "Effect of downwind swells on offshore wind energy harvesting – A large-eddy simulation study," Renewable Energy, Elsevier, vol. 70(C), pages 11-23.
    2. Diarce, G. & Campos-Celador, Á. & Martin, K. & Urresti, A. & García-Romero, A. & Sala, J.M., 2014. "A comparative study of the CFD modeling of a ventilated active façade including phase change materials," Applied Energy, Elsevier, vol. 126(C), pages 307-317.
    3. Stevens, Richard J.A.M. & Graham, Jason & Meneveau, Charles, 2014. "A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms," Renewable Energy, Elsevier, vol. 68(C), pages 46-50.
    4. Giulio Vita & Syeda Anam Hashmi & Simone Salvadori & Hassan Hemida & Charalampos Baniotopoulos, 2020. "Role of Inflow Turbulence and Surrounding Buildings on Large Eddy Simulations of Urban Wind Energy," Energies, MDPI, vol. 13(19), pages 1-22, October.
    5. Asfour, Omar S. & Gadi, Mohamed B., 2008. "Using CFD to investigate ventilation characteristics of vaults as wind-inducing devices in buildings," Applied Energy, Elsevier, vol. 85(12), pages 1126-1140, December.
    6. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    7. Jiying Liu & Shengwei Zhu & Moon Keun Kim & Jelena Srebric, 2019. "A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments," Sustainability, MDPI, vol. 11(15), pages 1-33, August.
    8. Lu, Lin & Ip, Ka Yan, 2009. "Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 450-461, February.
    9. Chow, W. K., 2004. "Wind-induced indoor-air flow in a high-rise building adjacent to a vertical wall," Applied Energy, Elsevier, vol. 77(2), pages 225-234, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    2. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    3. Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    4. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    6. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.
    7. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    8. Lignarolo, Lorenzo E.M. & Mehta, Dhruv & Stevens, Richard J.A.M. & Yilmaz, Ali Emre & van Kuik, Gijs & Andersen, Søren J. & Meneveau, Charles & Ferreira, Carlos J. & Ragni, Daniele & Meyers, Johan & v, 2016. "Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine," Renewable Energy, Elsevier, vol. 94(C), pages 510-523.
    9. Kalmár, Tünde & Szodrai, Ferenc & Kalmár, Ferenc, 2022. "Experimental study of local effectiveness in the case of balanced mechanical ventilation in small offices," Energy, Elsevier, vol. 244(PA).
    10. Jangyoul You & Kipyo You & Minwoo Park & Changhee Lee, 2021. "Airflow Characteristics According to the Change in the Height and Porous Rate of Building Roofs for Efficient Installation of Small Wind Power Generators," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    11. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    12. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    13. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    14. Daoru Liu & Zhigang Ren & Shen Wei & Zhe Song & Peipeng Li & Xin Chen, 2019. "Investigations on the Winter Thermal Environment of Bedrooms in Zhongxiang: A Case Study in Rural Areas in Hot Summer and Cold Winter Region of China," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
    15. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    16. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    17. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.
    18. Shuolin Xiao & Di Yang, 2019. "Large-Eddy Simulation-Based Study of Effect of Swell-Induced Pitch Motion on Wake-Flow Statistics and Power Extraction of Offshore Wind Turbines," Energies, MDPI, vol. 12(7), pages 1-17, April.
    19. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Jinghua Yu & Kangxin Leng & Feifei Wang & Hong Ye & Yongqiang Luo, 2020. "Simulation Study on Dynamic Thermal Performance of a New Ventilated Roof with Form-Stable PCM in Southern China," Sustainability, MDPI, vol. 12(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5384-:d:625112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.