IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2320-d354798.html
   My bibliography  Save this article

Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization

Author

Listed:
  • Kyoungboo Yang

    (Faculty of Wind Energy Engineering, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea)

Abstract

For a wind turbine to extract as much energy as possible from the wind, blade geometry optimization to maximize the aerodynamic performance is important. Blade design optimization includes linearizing the blade chord and twist distribution for practical manufacturing. As blade linearization changes the blade geometry, it also affects the aerodynamic performance and load characteristics of the wind turbine rotor. Therefore, it is necessary to understand the effects of the design parameters used in linearization. In this study, the effects of these parameters on the aerodynamic performance of a wind turbine blade were examined. In addition, an optimization algorithm for linearization and an objective function that applies multiple tip speed ratios to optimize the aerodynamic efficiency were developed. The analysis revealed that increasing the chord length and chord profile slope improves the aerodynamic efficiency at low wind speeds but lowers it at high wind speeds, and that the twist profile mainly affects the behaviour at low wind speeds, while its effect on the aerodynamic performance at high wind speeds is not significant. When the blade geometry was optimized by applying the linearization parameter ranges obtained from the analysis, blade geometry with improved aerodynamic efficiency at all wind speeds below the rated wind speed was derived.

Suggested Citation

  • Kyoungboo Yang, 2020. "Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization," Energies, MDPI, vol. 13(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2320-:d:354798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lanzafame, R. & Messina, M., 2012. "BEM theory: How to take into account the radial flow inside of a 1-D numerical code," Renewable Energy, Elsevier, vol. 39(1), pages 440-446.
    2. Maalawi, K.Y. & Badr, M.A, 2003. "A practical approach for selecting optimum wind rotors," Renewable Energy, Elsevier, vol. 28(5), pages 803-822.
    3. Vianna Neto, Júlio Xavier & Guerra Junior, Elci José & Moreno, Sinvaldo Rodrigues & Hultmann Ayala, Helon Vicente & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2018. "Wind turbine blade geometry design based on multi-objective optimization using metaheuristics," Energy, Elsevier, vol. 162(C), pages 645-658.
    4. Vaz, Jerson Rogério Pinheiro & Pinho, João Tavares & Mesquita, André Luiz Amarante, 2011. "An extension of BEM method applied to horizontal-axis wind turbine design," Renewable Energy, Elsevier, vol. 36(6), pages 1734-1740.
    5. Yin, Minghui & Yang, Zhiqiang & Xu, Yan & Liu, Jiankun & Zhou, Lianjun & Zou, Yun, 2018. "Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency," Applied Energy, Elsevier, vol. 221(C), pages 508-521.
    6. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    7. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    8. Liu, Xiongwei & Wang, Lin & Tang, Xinzi, 2013. "Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades," Renewable Energy, Elsevier, vol. 57(C), pages 111-119.
    9. Zhiqiang Yang & Minghui Yin & Yan Xu & Zhengyang Zhang & Yun Zou & Zhao Yang Dong, 2016. "A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades," Energies, MDPI, vol. 9(6), pages 1-16, May.
    10. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    11. Yang, Hua & Shen, Wenzhong & Xu, Haoran & Hong, Zedong & Liu, Chao, 2014. "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD," Renewable Energy, Elsevier, vol. 70(C), pages 107-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Wrobel & Krzysztof Tomczewski & Artur Sliwinski & Andrzej Tomczewski, 2021. "Optimization of a Small Wind Power Plant for Annual Wind Speed Distribution," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Mikkel Schou Nielsen & Ivan Nikolov & Emil Krog Kruse & Jørgen Garnæs & Claus Brøndgaard Madsen, 2020. "High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness," Energies, MDPI, vol. 13(15), pages 1-17, July.
    3. Mohammed Debbache & Messaoud Hazmoune & Semcheddine Derfouf & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu, 2021. "Wind Blade Twist Correction for Enhanced Annual Energy Production of Wind Turbines," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    4. Waldemar Kuczyński & Katarzyna Wolniewicz & Henryk Charun, 2021. "Analysis of the Wind Turbine Selection for the Given Wind Conditions," Energies, MDPI, vol. 14(22), pages 1-16, November.
    5. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    2. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    3. Abdelsalam, Ali M. & El-Askary, W.A. & Kotb, M.A. & Sakr, I.M., 2021. "Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile," Energy, Elsevier, vol. 216(C).
    4. Hércules Araújo Oliveira & José Gomes de Matos & Luiz Antonio de Souza Ribeiro & Osvaldo Ronald Saavedra & Jerson Rogério Pinheiro Vaz, 2023. "Assessment of Correction Methods Applied to BEMT for Predicting Performance of Horizontal-Axis Wind Turbines," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    5. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    6. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    7. Anurag Rajan & Fernando L. Ponta, 2019. "A Novel Correlation Model for Horizontal Axis Wind Turbines Operating at High-Interference Flow Regimes," Energies, MDPI, vol. 12(6), pages 1-20, March.
    8. Sun, ZhaoCheng & Li, Dong & Mao, YuFeng & Feng, Long & Zhang, Yue & Liu, Chao, 2022. "Anti-cavitation optimal design and experimental research on tidal turbines based on improved inverse BEM," Energy, Elsevier, vol. 239(PD).
    9. Lanzafame, R. & Messina, M., 2013. "Advanced brake state model and aerodynamic post-stall model for horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 415-420.
    10. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
    11. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    12. Jia, Liangyue & Hao, Jia & Hall, John & Nejadkhaki, Hamid Khakpour & Wang, Guoxin & Yan, Yan & Sun, Mengyuan, 2021. "A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power," Energy, Elsevier, vol. 215(PA).
    13. Jie Zhu & Xin Cai & Rongrong Gu, 2017. "Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 10(1), pages 1-18, January.
    14. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    15. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    16. Peng, Chao & Zou, Jianxiao & Li, Yan & Xu, Hongbing & Li, Liying, 2017. "A novel composite calculation model for power coefficient and flapping moment coefficient of wind turbine," Energy, Elsevier, vol. 126(C), pages 821-829.
    17. Venkaiah, P. & Sarkar, Bikash K., 2020. "Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller," Renewable Energy, Elsevier, vol. 147(P1), pages 55-68.
    18. Ahmadi Asl, Hamid & Kamali Monfared, Reza & Rad, Manouchehr, 2017. "Experimental investigation of blade number and design effects for a ducted wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 334-343.
    19. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    20. Moghadassian, Behnam & Sharma, Anupam, 2020. "Designing wind turbine rotor blades to enhance energy capture in turbine arrays," Renewable Energy, Elsevier, vol. 148(C), pages 651-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2320-:d:354798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.