IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2284-d354256.html
   My bibliography  Save this article

Use of Analytic Hierarchy Process for Wind Farm Installation Region Prioritization–Case Study

Author

Listed:
  • Rômulo Lemos Bulhões

    (SENAI CIMATEC-Integrated Campus of Manufacturing and Technology, Salvador 41650-010, Brazil)

  • Eudemário Souza de Santana

    (Master Program in Energy, UNIFACS–Salvador University, Salvador 40140-110, Brazil)

  • Alex Álisson Bandeira Santos

    (SENAI CIMATEC-Integrated Campus of Manufacturing and Technology, Salvador 41650-010, Brazil)

Abstract

Electricity generation via renewable sources is emerging as a possible solution to meet the growing demand for electricity worldwide. Additionally, the need to produce clean energy, with little or no pollutants or greenhouse gas emission is paramount. Due to these factors, wind farms are noticeably increasing in number, especially in Brazil. However, the vast size of the country and the poor quality of its infrastructure are among several factors that make it difficult for effective decision-making to accelerate the growth of this segment in Brazil. With the purpose of assisting government agencies, regulatory agencies and other institutions in this area, the use of a multi-criteria selection method called the analytic hierarchy process is proposed here to assist in decision-making and to select priority regions for implementing wind farms. This work focuses on a case study of the state of Bahia, in which 27 territories were selected for an installation priority evaluation. Computational tools were used to hierarchize these chosen territories, including Matlab, for the construction of the computational algorithm. The results indicate the priority pf the regions according to the established criteria, which allows installation locations to be mapped—these could serve as a basis for regional investment.

Suggested Citation

  • Rômulo Lemos Bulhões & Eudemário Souza de Santana & Alex Álisson Bandeira Santos, 2020. "Use of Analytic Hierarchy Process for Wind Farm Installation Region Prioritization–Case Study," Energies, MDPI, vol. 13(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2284-:d:354256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    2. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    3. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    4. Rojas-Zerpa, Juan C. & Yusta, Jose M., 2015. "Application of multicriteria decision methods for electric supply planning in rural and remote areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 557-571.
    5. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    6. Malkawi, Salaheddin & Al-Nimr, Moh'd & Azizi, Danah, 2017. "A multi-criteria optimization analysis for Jordan's energy mix," Energy, Elsevier, vol. 127(C), pages 680-696.
    7. de Alegría, Iñigo Martinez & Andreu, Jon & Martín, José Luis & Ibañez, Pedro & Villate, José Luis & Camblong, Haritza, 2007. "Connection requirements for wind farms: A survey on technical requierements and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1858-1872, October.
    8. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    2. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    3. Nagababu, Garlapati & Puppala, Harish & Pritam, Kocherlakota & Kantipudi, MVV Prasad, 2022. "Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India," Energy, Elsevier, vol. 248(C).
    4. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    6. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    7. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    9. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    10. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    11. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    12. Dehghan, Hassan & Pourfayaz, Fathollah & Shahsavari, Ardavan, 2022. "Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system," Renewable Energy, Elsevier, vol. 198(C), pages 189-199.
    13. Peri, Erez & Tal, Alon, 2021. "Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis," Energy Policy, Elsevier, vol. 155(C).
    14. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    15. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    16. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    17. Alao, M.A. & Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Popoola, O.M., 2020. "Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria," Energy, Elsevier, vol. 201(C).
    18. Cucchiella, Federica & D’Adamo, Idiano & Gastaldi, Massimo & Koh, SC Lenny & Rosa, Paolo, 2017. "A comparison of environmental and energetic performance of European countries: A sustainability index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 401-413.
    19. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    20. Wu, Yunna & Liao, Mingjuan & Hu, Mengyao & Lin, Jiawei & Zhou, Jianli & Zhang, Buyuan & Xu, Chuanbo, 2020. "A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2284-:d:354256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.