IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1426-d334059.html
   My bibliography  Save this article

Considering Local Air Pollution in the Benefit Assessment and Cost Allocation of Cross Border Transmission Projects

Author

Listed:
  • Deniz Sun

    (Institute for Research in Technology (IIT), Comillas Pontifical University, 28015 Madrid, Spain)

  • Luis Olmos

    (Institute for Research in Technology (IIT), Comillas Pontifical University, 28015 Madrid, Spain)

  • Michel Rivier

    (Institute for Research in Technology (IIT), Comillas Pontifical University, 28015 Madrid, Spain)

Abstract

Developing a regional power system to achieve a high level of integration of national systems requires sufficient development of the regional transmission grid. This is possible only with appropriate schemes for the complete cost–benefit analyses, and cost allocation of these transmission investments, which plays a critical role in the selection of the most efficient network investment and the proper assignment of their cost to the national systems. Network reinforcements affect the operation of power systems and, therefore, the externalities of power generation. This paper examines the impacts of integrating local air pollution damage from power production within the benefit assessment and cost allocation of transmission investments. The paper describes the methodology followed and illustrates its application in a real-life case study where a simplified version of a European network is considered. Within this case study, we have assessed the impact of considering the reduction in air pollution damage achieved through a particular HVDC project between France and Spain on the benefits, and benefit-driven cost allocation, computed for this project. In this case study, local pollution related benefits are a relevant fraction of the overall benefits of the considered transmission project. However, considering the local air pollution benefits of the project does not affect the net positive benefits of each country significantly, resulting in a limited change in the cost allocation of the project.

Suggested Citation

  • Deniz Sun & Luis Olmos & Michel Rivier, 2020. "Considering Local Air Pollution in the Benefit Assessment and Cost Allocation of Cross Border Transmission Projects," Energies, MDPI, vol. 13(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1426-:d:334059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Held, Anne & Ragwitz, Mario & Sensfuß, Frank & Resch, Gustav & Olmos, Luis & Ramos, Andrés & Rivier, Michel, 2018. "How can the renewables targets be reached cost-effectively? Policy options for the development of renewables and the transmission grid," Energy Policy, Elsevier, vol. 116(C), pages 112-126.
    2. Czarnowska, Lucyna & Frangopoulos, Christos A., 2012. "Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity," Energy, Elsevier, vol. 41(1), pages 212-219.
    3. Spiros Livieratos & Vasiliki-Emmanouela Vogiatzaki & Panayotis G. Cottis, 2013. "A Generic Framework for the Evaluation of the Benefits Expected from the Smart Grid," Energies, MDPI, vol. 6(2), pages 1-21, February.
    4. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    5. Rabl,Ari & Spadaro,Joseph V. & Holland,Mike, 2014. "How Much Is Clean Air Worth?," Cambridge Books, Cambridge University Press, number 9781107043138.
    6. Rodgers, Mark D. & Coit, David W. & Felder, Frank A. & Carlton, Annmarie, 2018. "Generation expansion planning considering health and societal damages – A simulation-based optimization approach," Energy, Elsevier, vol. 164(C), pages 951-963.
    7. Battaglini, Antonella & Komendantova, Nadejda & Brtnik, Patricia & Patt, Anthony, 2012. "Perception of barriers for expansion of electricity grids in the European Union," Energy Policy, Elsevier, vol. 47(C), pages 254-259.
    8. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
    9. Schleisner, Lotte, 2000. "Comparison of methodologies for externality assessment," Energy Policy, Elsevier, vol. 28(15), pages 1127-1136, December.
    10. Gorenstein Dedecca, João & Lumbreras, Sara & Ramos, Andrés & Hakvoort, Rudi A. & Herder, Paulien M., 2018. "Expansion planning of the North Sea offshore grid: Simulation of integrated governance constraints," Energy Economics, Elsevier, vol. 72(C), pages 376-392.
    11. Thopil, George Alex & Pouris, Anastassios, 2015. "Aggregation and internalisation of electricity externalities in South Africa," Energy, Elsevier, vol. 82(C), pages 501-511.
    12. William W. Hogan, 2018. "A Primer on Transmission Benefits and Cost Allocation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Moretti & Charalampos Pitas & George Christofi & Emmanuel Bué & Modesto Gabrieli Francescato, 2020. "Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition," Energies, MDPI, vol. 13(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    2. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi Saghdel, 2018. "External costs from fossil electricity generation: A review of the applied impact pathway approach," Energy & Environment, , vol. 29(5), pages 635-648, August.
    3. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    4. Effendi, Yuventus & Resosudarmo, Budy, 2020. "Development of Renewable Energy in ASEAN Countries: Socio-economic and Environmental Impacts," Conference papers 333229, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    6. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    7. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    8. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    9. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    10. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    11. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    12. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    13. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    14. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    15. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    16. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    17. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    18. Jean-Claude Berthélemy & Arnaud Millien, 2018. "Impact of Decentralized Electrification Projects on Sustainable Development: A Meta-Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01922517, HAL.
    19. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    20. Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1426-:d:334059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.