IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1279-d330655.html
   My bibliography  Save this article

Comparison of Variable and Constant Loading for Mesophilic Food Waste Digestion in a Long-Term Experiment

Author

Listed:
  • He Song

    (Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing 210031, China
    Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Yue Zhang

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Sigrid Kusch-Brandt

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK
    Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy)

  • Charles J. Banks

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

Abstract

Operators of commercial anaerobic digestion (AD) plants frequently note the challenge of transferring research results to an industrial setting, especially in matching well-controlled laboratory studies at a constant organic loading rate (OLR) with full-scale digesters subject to day-to-day variation in loadings. This study compared the performance of food waste digesters at fluctuating and constant OLR. In a long-term experiment over nearly three years, variable daily OLR with a range as wide as 0 to 10.0 g VS L −1 day −1 (weekly average 5.0 g VS L −1 day −1 ) were applied to one laboratory-scale digester, while a pair of control digesters was operated at a constant daily loading of 5.0 g VS L −1 day −1 . Different schemes of trace elements (TE) supplementation were also tested to examine how they contributed to process stability. Variable loading had no adverse impact on biogas production or operational stability when 11 TE species were dosed. When TE addition was limited to cobalt and selenium, the stability of the variable-load digester was well maintained for nearly 300 days before the experiment was terminated, while the control digesters required re-supplementation with other TE species to reverse an accumulation of volatile fatty acids. This work demonstrated that variation in daily OLR across quite a wide range of applied loadings is possible with no adverse effects on methane production or stability of food waste digestion, giving confidence in the transferability of research findings. The positive effect of variable OLR on TE requirement requires further investigation considering its practical significance for AD industry.

Suggested Citation

  • He Song & Yue Zhang & Sigrid Kusch-Brandt & Charles J. Banks, 2020. "Comparison of Variable and Constant Loading for Mesophilic Food Waste Digestion in a Long-Term Experiment," Energies, MDPI, vol. 13(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1279-:d:330655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Swati Hegde & Thomas A. Trabold, 2019. "Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    2. Gómez, X. & Cuetos, M.J. & Cara, J. & Morán, A. & García, A.I., 2006. "Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes," Renewable Energy, Elsevier, vol. 31(12), pages 2017-2024.
    3. Aditi David & Tanvi Govil & Abhilash Kumar Tripathi & Julie McGeary & Kylie Farrar & Rajesh Kumar Sani, 2018. "Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes," Energies, MDPI, vol. 11(8), pages 1-13, August.
    4. Voelklein, M.A. & O' Shea, R. & Jacob, A. & Murphy, J.D., 2017. "Role of trace elements in single and two-stage digestion of food waste at high organic loading rates," Energy, Elsevier, vol. 121(C), pages 185-192.
    5. Rajeshwari, K. V. & Balakrishnan, M. & Kansal, A. & Lata, Kusum & Kishore, V. V. N., 2000. "State-of-the-art of anaerobic digestion technology for industrial wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 135-156, June.
    6. Emma Lindkvist & Magnus Karlsson & Jenny Ivner, 2019. "System Analysis of Biogas Production—Part II Application in Food Industry Systems," Energies, MDPI, vol. 12(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsigkou, Konstantina & Tsafrakidou, Panagiota & Zagklis, Dimitris & Panagiotouros, Anastasios & Sionakidis, Dimitris & Zontos, Dimitris Marios & Zafiri, Constantina & Kornaros, Michael, 2021. "Used disposable nappies and expired food products co-digestion: A pilot-scale system assessment," Renewable Energy, Elsevier, vol. 165(P1), pages 109-117.
    2. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Biswabandhu & Mazumder, Debabrata, 2019. "Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 439-469.
    2. Notodarmojo, Peni Astrini & Fujiwara, Takeshi & Habuer, & Pham Van, Dinh, 2022. "Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis," Energy, Elsevier, vol. 239(PC).
    3. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    4. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    5. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    6. Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    7. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    9. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    10. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    11. Lemmer, Andreas & Krümpel, Johannes, 2017. "Demand-driven biogas production in anaerobic filters," Applied Energy, Elsevier, vol. 185(P1), pages 885-894.
    12. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    13. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Agnieszka A. Pilarska & Agnieszka Wolna-Maruwka & Krzysztof Pilarski, 2018. "Kraft Lignin Grafted with Polyvinylpyrrolidone as a Novel Microbial Carrier in Biogas Production," Energies, MDPI, vol. 11(12), pages 1-22, November.
    15. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.
    16. Kolbl, Sabina & Forte-Tavčer, Petra & Stres, Blaž, 2017. "Potential for valorization of dehydrated paper pulp sludge for biogas production: Addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays," Energy, Elsevier, vol. 126(C), pages 326-334.
    17. Achiraya Jiraprasertwong & Kornpong Vichaitanapat & Malinee Leethochawalit & Sumaeth Chavadej, 2018. "Three-Stage Anaerobic Sequencing Batch Reactor (ASBR) for Maximum Methane Production: Effects of COD Loading Rate and Reactor Volumetric Ratio," Energies, MDPI, vol. 11(6), pages 1-16, June.
    18. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    19. Andalib, Mehran & Elbeshbishy, Elsayed & Mustafa, Nizar & Hafez, Hisham & Nakhla, George & Zhu, Jesse, 2014. "Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage," Renewable Energy, Elsevier, vol. 71(C), pages 276-285.
    20. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1279-:d:330655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.