IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1144-d327994.html
   My bibliography  Save this article

Assessment Indexes for Converter P-Q Control Coupling

Author

Listed:
  • Panagis N. Vovos

    (Department of Electrical and Computer Engineering, University of Patras, Rio Campus, 26504 Patras, Greece)

  • Ioannis D. Bouloumpasis

    (Department of Electrical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden)

  • Konstantinos G. Georgakas

    (Department of Electrical and Computer Engineering, University of the Peloponnese, 26334 Patras, Greece)

Abstract

This work presents a concise methodology for the calculation of assessment indexes regarding the coupling between active and reactive power control observed on distribution level converters. First, the reader is introduced to the concept of power coupling; when, where and how it appears in power control of converters. A brief summary of the theory and formulation behind it is also included, together with relevant literature. Then, the methodology for the assessment of active and reactive power control performance of any grid-connected converter is presented. The impact of small control disturbances during a testing procedure is monitored, analyzed and converted to meaningful indexes, so that the type and level of coupling is quantified without putting the converter or the grid at risk. The efficiency of the methodology to assess the type and level of coupling is verified experimentally. This is done by assessing several power control approaches with different level of decoupling efficiency on the same power converter connected to a distribution grid. While the assessment is performed with safe, minimal disturbances, its exceptional accuracy is later confirmed by the level and type of coupling observed during significant power step changes.

Suggested Citation

  • Panagis N. Vovos & Ioannis D. Bouloumpasis & Konstantinos G. Georgakas, 2020. "Assessment Indexes for Converter P-Q Control Coupling," Energies, MDPI, vol. 13(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1144-:d:327994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junjie Ma & Xudong Wang & Jinfeng Liu & Hanying Gao, 2019. "An Improved Droop Control Method for Voltage-Source Inverter Parallel Systems Considering Line Impedance Differences," Energies, MDPI, vol. 12(6), pages 1-17, March.
    2. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    3. Ioannis Bouloumpasis & Panagis Vovos & Konstantinos Georgakas & Nicholas A. Vovos, 2015. "Current Harmonics Compensation in Microgrids Exploiting the Power Electronics Interfaces of Renewable Energy Sources," Energies, MDPI, vol. 8(4), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    2. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    3. Nor Farahaida Abdul Rahman & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim, 2016. "Adaptive Hybrid Fuzzy-Proportional Plus Crisp-Integral Current Control Algorithm for Shunt Active Power Filter Operation," Energies, MDPI, vol. 9(9), pages 1-18, September.
    4. Paul Westacott & Chiara Candelise, 2016. "A Novel Geographical Information Systems Framework to Characterize Photovoltaic Deployment in the UK: Initial Evidence," Energies, MDPI, vol. 9(1), pages 1-20, January.
    5. Zeeshan Anjum Memon & Dalila Mat Said & Mohammad Yusri Hassan & Hafiz Mudassir Munir & Faisal Alsaif & Sager Alsulamy, 2023. "Effective Deterministic Methodology for Enhanced Distribution Network Performance and Plug-in Electric Vehicles," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    6. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    7. Tsikalakis, A.G. & Hatziargyriou, N.D., 2007. "Environmental benefits of distributed generation with and without emissions trading," Energy Policy, Elsevier, vol. 35(6), pages 3395-3409, June.
    8. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    9. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    10. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    11. Haeseldonckx, Dries & D'haeseleer, William, 2008. "The environmental impact of decentralised generation in an overall system context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 437-454, February.
    12. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    13. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    14. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2009. "A hierarchical decision making model for the prioritization of distributed generation technologies: A case study for Iran," Energy Policy, Elsevier, vol. 37(12), pages 5752-5763, December.
    15. Tóth, Tamás & Somossy, Éva Szabina & Horváth, Péter János, 2022. "A decentralizált villamosenergia-rendszerek fejlődésének nemzetközi és hazai szempontjai [International and domestic aspects of decentralized electricity system development]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 697-720.
    16. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    17. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    18. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    19. Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza, 2017. "Quantification of Forecast Error Costs of Photovoltaic Prosumers in Italy," Energies, MDPI, vol. 10(11), pages 1-17, November.
    20. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1144-:d:327994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.