IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p802-d319822.html
   My bibliography  Save this article

Geographical Potential of Solar Thermochemical Jet Fuel Production

Author

Listed:
  • Christoph Falter

    (Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, 82024 Taufkirchen, Germany)

  • Niklas Scharfenberg

    (Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, 82024 Taufkirchen, Germany)

  • Antoine Habersetzer

    (Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, 82024 Taufkirchen, Germany)

Abstract

The solar thermochemical fuel pathway offers the possibility to defossilize the transportation sector by producing renewable fuels that emit significantly less greenhouse gases than conventional fuels over the whole life cycle. Especially for the aviation sector, the availability of renewable liquid hydrocarbon fuels enables climate impact goals to be reached. In this paper, both the geographical potential and life-cycle fuel production costs are analyzed. The assessment of the geographical potential of solar thermochemical fuels excludes areas based on sustainability criteria such as competing land use, protected areas, slope, or shifting sands. On the remaining suitable areas, the production potential surpasses the current global jet fuel demand by a factor of more than fifty, enabling all but one country to cover its own demand. In many cases, a single country can even supply the world demand for jet fuel. A dedicated economic model expresses the life-cycle fuel production costs as a function of the location, taking into account local financial conditions by estimating the national costs of capital. It is found that the lowest production costs are to be expected in Israel, Chile, Spain, and the USA, through a combination of high solar irradiation and low-level capital costs. The thermochemical energy conversion efficiency also has a strong influence on the costs, scaling the size of the solar concentrator. Increasing the efficiency from 15% to 25%, the production costs are reduced by about 20%. In the baseline case, the global jet fuel demand could be covered at costs between 1.58 and 1.83 €/L with production locations in South America, the United States, and the Mediterranean region. The flat progression of the cost-supply curves indicates that production costs remain relatively constant even at very high production volumes.

Suggested Citation

  • Christoph Falter & Niklas Scharfenberg & Antoine Habersetzer, 2020. "Geographical Potential of Solar Thermochemical Jet Fuel Production," Energies, MDPI, vol. 13(4), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:802-:d:319822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    2. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    3. Lapp, J. & Davidson, J.H. & Lipiński, W., 2012. "Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery," Energy, Elsevier, vol. 37(1), pages 591-600.
    4. Thomas Huld & Magda Moner-Girona & Akos Kriston, 2017. "Geospatial Analysis of Photovoltaic Mini-Grid System Performance," Energies, MDPI, vol. 10(2), pages 1-21, February.
    5. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    6. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    7. Kim, Jiyong & Miller, James E. & Maravelias, Christos T. & Stechel, Ellen B., 2013. "Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production," Applied Energy, Elsevier, vol. 111(C), pages 1089-1098.
    8. Sooriyaarachchi, Thilanka M. & Tsai, I-Tsung & El Khatib, Sameh & Farid, Amro M. & Mezher, Toufic, 2015. "Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 653-668.
    9. Labordena, Mercè & Patt, Anthony & Bazilian, Morgan & Howells, Mark & Lilliestam, Johan, 2017. "Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 102(C), pages 52-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Falter & Andreas Sizmann, 2021. "Solar Thermochemical Hydrogen Production in the USA," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    2. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    2. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    3. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    4. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    5. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    6. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    8. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    9. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    10. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    11. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    12. Anatoli Segura & Alonso Villacorta, 2020. "Demand for safety, risky loans: A model of securitization," Temi di discussione (Economic working papers) 1260, Bank of Italy, Economic Research and International Relations Area.
    13. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    14. Gregory, Julian & Sovacool, Benjamin K., 2019. "Rethinking the governance of energy poverty in sub-Saharan Africa: Reviewing three academic perspectives on electricity infrastructure investment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 344-354.
    15. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    16. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    17. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    18. Monica Santillan Vera & Lilia Garcia Manrique & Isabel Rodriguez Pena & Angel de la Vega Navarro, 2021. "Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition," Working Paper Series 1021, Department of Economics, University of Sussex Business School.
    19. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    20. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:802-:d:319822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.