IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p512-d311313.html
   My bibliography  Save this article

Optimal Energy Storage System Positioning and Sizing with Robust Optimization

Author

Listed:
  • Nayeem Chowdhury

    (Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy)

  • Fabrizio Pilo

    (Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy)

  • Giuditta Pisano

    (Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy)

Abstract

Energy storage systems can improve the uncertainty and variability related to renewable energy sources such as wind and solar create in power systems. Aside from applications such as frequency regulation, time-based arbitrage, or the provision of the reserve, where the placement of storage devices is not particularly significant, distributed storage could also be used to improve congestions in the distribution networks. In such cases, the optimal placement of this distributed storage is vital for making a cost-effective investment. Furthermore, the now reached massive spread of distributed renewable energy resources in distribution systems, intrinsically uncertain and non-programmable, together with the new trends in the electric demand, often unpredictable, require a paradigm change in grid planning for properly lead with the uncertainty sources and the distribution system operators (DSO) should learn to support such change. This paper considers the DSO perspective by proposing a methodology for energy storage placement in the distribution networks in which robust optimization accommodates system uncertainty. The proposed method calls for the use of a multi-period convex AC-optimal power flow (AC-OPF), ensuring a reliable planning solution. Wind, photovoltaic (PV), and load uncertainties are modeled as symmetric and bounded variables with the flexibility to modulate the robustness of the model. A case study based on real distribution network information allows the illustration and discussion of the properties of the model. An important observation is that the method enables the system operator to integrate energy storage devices by fine-tuning the level of robustness it willing to consider, and that is incremental with the level of protection. However, the algorithm grows more complex as the system robustness increases and, thus, it requires higher computational effort.

Suggested Citation

  • Nayeem Chowdhury & Fabrizio Pilo & Giuditta Pisano, 2020. "Optimal Energy Storage System Positioning and Sizing with Robust Optimization," Energies, MDPI, vol. 13(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:512-:d:311313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    2. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    3. Bucciarelli, Martina & Paoletti, Simone & Vicino, Antonio, 2018. "Optimal sizing of energy storage systems under uncertain demand and generation," Applied Energy, Elsevier, vol. 225(C), pages 611-621.
    4. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    5. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    6. Peker, Meltem & Kocaman, Ayse Selin & Kara, Bahar Y., 2018. "Benefits of transmission switching and energy storage in power systems with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 1182-1197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad Alismail & Mohamed A. Abdulgalil & Muhammad Khalid, 2021. "Optimal Coordinated Planning of Energy Storage and Tie-Lines to Boost Flexibility with High Wind Power Integration," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    2. Eduard Massaguer & Albert Massaguer & Eudald Balló & Ivan Ruiz Cózar & Toni Pujol & Lino Montoro & Martí Comamala, 2020. "Electrical Generation of a Ground-Level Solar Thermoelectric Generator: Experimental Tests and One-Year Cycle Simulation," Energies, MDPI, vol. 13(13), pages 1-18, July.
    3. Abdulrahman Alassi & Khaled Ahmed & Agustí Egea-Àlvarez & Omar Ellabban, 2021. "Innovative Energy Management System for MVDC Networks with Black-Start Capabilities," Energies, MDPI, vol. 14(8), pages 1-21, April.
    4. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    5. Heejung Park, 2021. "A Stochastic Planning Model for Battery Energy Storage Systems Coupled with Utility-Scale Solar Photovoltaics," Energies, MDPI, vol. 14(5), pages 1-13, February.
    6. Anju Yadav & Nand Kishor & Richa Negi, 2023. "Bus Voltage Violations under Different Solar Radiation Profiles and Load Changes with Optimally Placed and Sized PV Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    7. Rahim, Sahar & Wang, Zhen & Ju, Ping, 2022. "Overview and applications of Robust optimization in the avant-garde energy grid infrastructure: A systematic review," Applied Energy, Elsevier, vol. 319(C).
    8. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    9. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    10. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    11. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    12. Stefano Bracco, 2020. "A Study for the Optimal Exploitation of Solar, Wind and Hydro Resources and Electrical Storage Systems in the Bormida Valley in the North of Italy," Energies, MDPI, vol. 13(20), pages 1-26, October.
    13. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    3. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    4. Karimi, Ali & Aminifar, Farrokh & Fereidunian, Alireza & Lesani, Hamid, 2019. "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach," Renewable Energy, Elsevier, vol. 134(C), pages 1042-1055.
    5. Benjamin Matthiss & Arghavan Momenifarahani & Jann Binder, 2021. "Storage Placement and Sizing in a Distribution Grid with High PV Generation," Energies, MDPI, vol. 14(2), pages 1-10, January.
    6. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    7. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    8. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    10. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    11. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    12. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    13. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    14. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    15. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    16. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    17. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    19. Erick Alves & Santiago Sanchez & Danilo Brandao & Elisabetta Tedeschi, 2019. "Smart Load Management with Energy Storage for Power Quality Enhancement in Wind-Powered Oil and Gas Applications," Energies, MDPI, vol. 12(15), pages 1-15, August.
    20. Sheeraz Iqbal & Salman Habib & Muhammad Ali & Aqib Shafiq & Anis ur Rehman & Emad M. Ahmed & Tahir Khurshaid & Salah Kamel, 2022. "The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods," Sustainability, MDPI, vol. 14(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:512-:d:311313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.