IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p365-d307798.html
   My bibliography  Save this article

Investigation of the Design and Fault Prediction Method for an Abrasive Particle Sensor Used in Wind Turbine Gearbox

Author

Listed:
  • Le Zhang

    (Jiangsu Key Construction Laboratory of IoT Application Technology, Wuxi Taihu University, Wuxi 214000, China)

  • Qiang Yang

    (Jiangsu Key Construction Laboratory of IoT Application Technology, Wuxi Taihu University, Wuxi 214000, China)

Abstract

The gearbox is a key sub-component of a wind power generation system with high failure rate leading to shutdowns. By monitoring the abrasive particles in the lubricating oil when the gearbox is running, any abnormal condition of the gearbox can be found in advance. This information may be used to improve the operational safety of the wind turbine and reduce losses because of shutdowns and maintenance. In this paper, a three-coil induction abrasive particle sensor is designed based on the application of high-power wind turbine gearbox. The performance of the sensor and the design method of the detection circuit are described in detail, and the sensor operation performance used in the 2 MW wind turbine is verified. The results show that the sensor has superior performance in identifying ferromagnetic abrasive particles above 200 μm and plays a good role in status monitoring and fault prediction for the gearbox.

Suggested Citation

  • Le Zhang & Qiang Yang, 2020. "Investigation of the Design and Fault Prediction Method for an Abrasive Particle Sensor Used in Wind Turbine Gearbox," Energies, MDPI, vol. 13(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:365-:d:307798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    2. Antoniadis, Anestis & Dinh Tuan Pham, 1998. "Wavelet regression for random or irregular design," Computational Statistics & Data Analysis, Elsevier, vol. 28(4), pages 353-369, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
    2. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    4. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    5. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    6. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    7. Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.
    8. Wenyi, Liu & Zhenfeng, Wang & Jiguang, Han & Guangfeng, Wang, 2013. "Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM," Renewable Energy, Elsevier, vol. 50(C), pages 1-6.
    9. Harrold, Magnus & Ouro, Pablo & O’Doherty, Tim, 2020. "Performance assessment of a tidal turbine using two flow references," Renewable Energy, Elsevier, vol. 153(C), pages 624-633.
    10. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    11. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    12. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    13. Guerine, A. & El Hami, A. & Walha, L. & Fakhfakh, T. & Haddar, M., 2017. "Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method," Renewable Energy, Elsevier, vol. 113(C), pages 679-687.
    14. Oh, Ki-Yong & Park, Joon-Young & Lee, Jun-Shin & Lee, JaeKyung, 2015. "Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions," Renewable Energy, Elsevier, vol. 79(C), pages 150-160.
    15. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    16. Lee, Jae-Kyung & Park, Joon-Young & Oh, Ki-Yong & Ju, Seung-Hwan & Lee, Jun-Shin, 2015. "Transformation algorithm of wind turbine blade moment signals for blade condition monitoring," Renewable Energy, Elsevier, vol. 79(C), pages 209-218.
    17. Yunxuan Dong & Jianzhou Wang & Chen Wang & Zhenhai Guo, 2017. "Research and Application of Hybrid Forecasting Model Based on an Optimal Feature Selection System—A Case Study on Electrical Load Forecasting," Energies, MDPI, vol. 10(4), pages 1-27, April.
    18. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    19. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    20. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:365-:d:307798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.