IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5639-d436132.html
   My bibliography  Save this article

Electric Power System Transformations: A Review of Main Prospects and Challenges

Author

Listed:
  • Nikolai Voropai

    (Energy Systems Institute, Lermontov Str., 130, 664033 Irkutsk, Russia)

Abstract

The paper deals with the main prospects and challenges of radical transformations of electric power systems (EPSs) with changes in their structure and properties conditioned by wide use of innovative energy-related technologies and digitalization and intellectualization of system operation and control. Structural trends of EPS development are the focus of the analysis. Consideration is given to changes in EPS properties driven by the use of new technologies, to the problems of system flexibility and to its enhancement. EPS “resiliency” and “survivability” notions are subjected to comparison. The main factors favoring the formation of future EPSs to cyber-physical systems are discussed. Objective trends of EPS control and protection system development are under consideration.

Suggested Citation

  • Nikolai Voropai, 2020. "Electric Power System Transformations: A Review of Main Prospects and Challenges," Energies, MDPI, vol. 13(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5639-:d:436132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    2. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judy P. Che-Castaldo & Rémi Cousin & Stefani Daryanto & Grace Deng & Mei-Ling E. Feng & Rajesh K. Gupta & Dezhi Hong & Ryan M. McGranaghan & Olukunle O. Owolabi & Tianyi Qu & Wei Ren & Toryn L. J. Sch, 2021. "Critical Risk Indicators (CRIs) for the electric power grid: a survey and discussion of interconnected effects," Environment Systems and Decisions, Springer, vol. 41(4), pages 594-615, December.
    2. Larissa P. Steblyakova & Elena Vechkinzova & Zhibek Khussainova & Zhanibek Zhartay & Yelena Gordeyeva, 2022. "Green Energy: New Opportunities or Challenges to Energy Security for the Common Electricity Market of the Eurasian Economic Union Countries," Energies, MDPI, vol. 15(14), pages 1-26, July.
    3. Sandra Giraldo & David la Rotta & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortúa, 2021. "Digital Transformation of Energy Companies: A Colombian Case Study," Energies, MDPI, vol. 14(9), pages 1-14, April.
    4. Insu Kim & Beopsoo Kim & Denis Sidorov, 2022. "Machine Learning for Energy Systems Optimization," Energies, MDPI, vol. 15(11), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    2. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    3. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    4. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    5. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    7. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    8. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    9. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    10. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    11. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    12. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    14. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    15. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    16. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    17. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    18. Vivian Do & Heather McBrien & Nina M. Flores & Alexander J. Northrop & Jeffrey Schlegelmilch & Mathew V. Kiang & Joan A. Casey, 2023. "Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Künneke, Rolf & Groenewegen, John & Ménard, Claude, 2010. "Aligning modes of organization with technology: Critical transactions in the reform of infrastructures," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 494-505, September.
    20. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5639-:d:436132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.