IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5526-d432683.html
   My bibliography  Save this article

Thermal Efficiency of Oxyhydrogen Gas Burner

Author

Listed:
  • Roberto Moreno-Soriano

    (Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, ESIME-U. Azc., Av. de las Granjas 682, Col. Santa Catarina, Ciudad de México CP 02250, Mexico
    Instituto Politécnico Nacional, ESIQIE, Laboratorio de Electroquímica, UPALM, Ciudad de México CP 07738, Mexico)

  • Froylan Soriano-Moranchel

    (Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, ESIME-U. Azc., Av. de las Granjas 682, Col. Santa Catarina, Ciudad de México CP 02250, Mexico)

  • Luis Armando Flores-Herrera

    (Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, ESIME-U. Azc., Av. de las Granjas 682, Col. Santa Catarina, Ciudad de México CP 02250, Mexico)

  • Juan Manuel Sandoval-Pineda

    (Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, ESIME-U. Azc., Av. de las Granjas 682, Col. Santa Catarina, Ciudad de México CP 02250, Mexico)

  • Rosa de Guadalupe González-Huerta

    (Instituto Politécnico Nacional, ESIQIE, Laboratorio de Electroquímica, UPALM, Ciudad de México CP 07738, Mexico)

Abstract

One of the main methods used to generate thermal energy is the combustion process. Burners are used in both industrial and residential applications of the open combustion process. The use of fuels that reduce polluting gas emissions and costs in industrial and residential processes is currently a topic of significant interest. Hydrogen is considered an attractive fuel for application in combustion systems due to its high energy density, wide flammability range, and only produces water vapor as waste. Compared to research conducted regarding hydrocarbon combustion, studies on hydrogen burners have been limited. This paper presents the design and evaluation of an oxyhydrogen gas burner for the atmospheric combustion process. The gas is generated in situ with an alkaline electrolyzer with a production rate of up to 3 sL min −1 . The thermal efficiency of a gas burner is defined as the percentage of the input thermal energy transferred to the desired load with respect to a given time interval. The experimental results show a thermal efficiency of 30% for a minimum flow rate of 1.5 sL min −1 and 76% for a flow rate of 3.5 sL min −1 . These results relate to a 10 mm height between the burner surface and heated container.

Suggested Citation

  • Roberto Moreno-Soriano & Froylan Soriano-Moranchel & Luis Armando Flores-Herrera & Juan Manuel Sandoval-Pineda & Rosa de Guadalupe González-Huerta, 2020. "Thermal Efficiency of Oxyhydrogen Gas Burner," Energies, MDPI, vol. 13(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5526-:d:432683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    2. Kim, Hong Gun & Kwac, Lee Ku & Shin, Joong Dal, 2012. "Physical properties and flame characteristics of water electrolysis gas," Renewable Energy, Elsevier, vol. 42(C), pages 84-89.
    3. Tang, Chenglong & Zhang, Yingjia & Huang, Zuohua, 2014. "Progress in combustion investigations of hydrogen enriched hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 195-216.
    4. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    5. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
    6. Namkhat, A. & Jugjai, S., 2010. "Primary air entrainment characteristics for a self-aspirating burner: Model and experiments," Energy, Elsevier, vol. 35(4), pages 1701-1708.
    7. Stathopoulos, P. & Sleem, T. & Paschereit, C.O., 2017. "Steam generation with stoichiometric combustion of H2/O2 as a way to simultaneously provide primary control reserve and energy storage," Applied Energy, Elsevier, vol. 205(C), pages 692-702.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajji, Yassine & Bouteraa, Mourad & ELCafsi, Afif & Belghith, Ali & Bournot, Philippe & Kallel, Ftouh, 2015. "Natural ventilation of hydrogen during a leak in a residential garage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 810-818.
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    4. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    5. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    6. Deore, Sujeetkumar P. & Gadkari, Prabodh & Mahajani, Sanjay M. & Kumar, Sandeep & Kumar, Sudarshan, 2023. "Development of a new premixed burner for biomass gasifier generated low calorific value producer gas for industrial applications," Energy, Elsevier, vol. 279(C).
    7. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    9. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    10. Zhaohua Wang & Chunyang Dong & Xuan Tang & Xuetao Qin & Xingwu Liu & Mi Peng & Yao Xu & Chuqiao Song & Jie Zhang & Xuan Liang & Sheng Dai & Ding Ma, 2022. "CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2016. "Power to Gas–biomass oxycombustion hybrid system: Energy integration and potential applications," Applied Energy, Elsevier, vol. 167(C), pages 221-229.
    12. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    13. Huaibin Gao & Yongyong Wang & Shouchao Zong & Yu Ma & Chuanwei Zhang, 2023. "Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media," Energies, MDPI, vol. 16(14), pages 1-18, July.
    14. Chen, Scarlett & Kumar, Anikesh & Wong, Wee Chin & Chiu, Min-Sen & Wang, Xiaonan, 2019. "Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies," Applied Energy, Elsevier, vol. 233, pages 321-337.
    15. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Fu-Sheng Li & Guo-Xiu Li & Zuo-Yu Sun, 2017. "Explosion Behaviour of 30% Hydrogen/70% Methane-Blended Fuels in a Weak Turbulent Environment," Energies, MDPI, vol. 10(7), pages 1-15, July.
    17. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    18. Bani, Stephen & Pan, Jianfeng & Tang, Aikun & Lu, Qingbo & Zhang, Yi, 2018. "Numerical investigation of key parameters of the porous media combustion based Micro-Thermophotovoltaic system," Energy, Elsevier, vol. 157(C), pages 969-978.
    19. Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.
    20. Wu, H. & Kaviany, M. & Kwon, O.C., 2018. "Thermophotovoltaic power conversion using a superadiabatic radiant burner," Applied Energy, Elsevier, vol. 209(C), pages 392-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5526-:d:432683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.