IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5368-d428324.html
   My bibliography  Save this article

Hydroelectric Operation Optimization and Unexpected Spillage Indications

Author

Listed:
  • Ramon Abritta

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil)

  • Frederico Panoeiro

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil)

  • Leonardo Honório

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil)

  • Ivo Silva Junior

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil)

  • André Marcato

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil)

  • Anapaula Guimarães

    (Electrical Engineering Department, Center of Superior Education of Juiz de Fora, 36021-630 Juiz de Fora, Brazil)

Abstract

It is widely known that hydroelectric power plants benefit from optimized operation schedules, since the latter prevent water and, therefore, monetary wastes, contributing to significant environmental and economic gains. The level of detail on the representation of such systems is related to how far ahead the planning horizon is extended. Aiming at the very short-term optimization of hydroelectric power plants, which usually requires the most detailed models, this paper addresses an undesired effect that, despite being already mentioned in the literature, has not been properly explored and explained yet. This effect is given by the indication of spillage by the optimizer, even when the reservoir does not reach its maximum capacity. Simulations implemented in Julia language using real power plant data expose this phenomenon. Possible ways to circumvent it are presented. Results showed that, in specific cases, spillage allows the achieving of more efficient operating points by reducing the gross head and increasing the amount of water that flows through turbines. Furthermore, it was verified that applying water outflow-based objective functions prevents undesired spillage indications, despite causing machines to operate at lower efficiency levels, compared with the utilization of power losses-based objective functions.

Suggested Citation

  • Ramon Abritta & Frederico Panoeiro & Leonardo Honório & Ivo Silva Junior & André Marcato & Anapaula Guimarães, 2020. "Hydroelectric Operation Optimization and Unexpected Spillage Indications," Energies, MDPI, vol. 13(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5368-:d:428324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jens Weibezahn & Mario Kendziorski, 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language," Energies, MDPI, vol. 12(6), pages 1-21, March.
    2. Anderson Passos de Aragão & Patrícia Teixeira Leite Asano & Ricardo de Andrade Lira Rabêlo, 2020. "A Reservoir Operation Policy Using Inter-Basin Water Transfer for Maximizing Hydroelectric Benefits in Brazil," Energies, MDPI, vol. 13(10), pages 1-26, May.
    3. Fredo, Guilherme Luiz Minetto & Finardi, Erlon Cristian & de Matos, Vitor Luiz, 2019. "Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches," Renewable Energy, Elsevier, vol. 131(C), pages 45-54.
    4. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    5. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    6. Poncelet, Kris & Delarue, Erik & D’haeseleer, William, 2020. "Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility," Applied Energy, Elsevier, vol. 258(C).
    7. Wentao Yang & Fushuan Wen & Ke Wang & Yuchun Huang & Md. Abdus Salam, 2018. "Modeling of a District Heating System and Optimal Heat-Power Flow," Energies, MDPI, vol. 11(4), pages 1-19, April.
    8. Soito, João Leonardo da Silva & Freitas, Marcos Aurélio Vasconcelos, 2011. "Amazon and the expansion of hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3165-3177, August.
    9. Yuan, Xiaohui & Yuan, Yanbin & Zhang, Yongchuan, 2002. "A hybrid chaotic genetic algorithm for short-term hydro system scheduling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(4), pages 319-327.
    10. Tarroja, Brian & AghaKouchak, Amir & Samuelsen, Scott, 2016. "Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation," Energy, Elsevier, vol. 111(C), pages 295-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    2. Pedro H. M. Nascimento & Vinícius A. Cabral & Ivo C. Silva Junior & Frederico F. Panoeiro & Leonardo M. Honório & André L. M. Marcato, 2021. "Spillage Forecast Models in Hydroelectric Power Plants Using Information from Telemetry Stations and Hydraulic Control," Energies, MDPI, vol. 14(1), pages 1-16, January.
    3. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    4. Venus, Terese E. & Hinzmann, Mandy & Bakken, Tor Haakon & Gerdes, Holger & Godinho, Francisco Nunes & Hansen, Bendik & Pinheiro, António & Sauer, Johannes, 2020. "The public's perception of run-of-the-river hydropower across Europe," Energy Policy, Elsevier, vol. 140(C).
    5. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    7. Zhang, Huifeng & Yue, Dong & Xie, Xiangpeng & Dou, Chunxia & Sun, Feng, 2017. "Gradient decent based multi-objective cultural differential evolution for short-term hydrothermal optimal scheduling of economic emission with integrating wind power and photovoltaic power," Energy, Elsevier, vol. 122(C), pages 748-766.
    8. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    9. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    10. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    11. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    12. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    13. Fang-Fang Li & Jia-Hua Wei & Xu-Dong Fu & Xin-Yu Wan, 2012. "An Effective Approach to Long-Term Optimal Operation of Large-Scale Reservoir Systems: Case Study of the Three Gorges System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4073-4090, November.
    14. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    15. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    16. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    17. José Roberto Ribas & Jorge Santos Ribas & Andrés Suárez García & Elena Arce Fariña & David González Peña & Ana García Rodríguez, 2021. "A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    18. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    19. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    20. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5368-:d:428324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.