IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p274-d305565.html
   My bibliography  Save this article

A Study on the Operational Condition of a Ground Source Heat Pump in Bangkok Based on a Field Experiment and Simulation

Author

Listed:
  • Yutaro Shimada

    (Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan)

  • Youhei Uchida

    (Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama-shi, Fukushima 963-0298, Japan)

  • Isao Takashima

    (The Mining Museum, Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan)

  • Srilert Chotpantarat

    (Department of Geology, Faculty of Science, Chulalongkorn University, 254 Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
    Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
    Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok 10330, Thailand)

  • Arif Widiatmojo

    (Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama-shi, Fukushima 963-0298, Japan)

  • Sasimook Chokchai

    (Department of Geology, Faculty of Science, Chulalongkorn University, 254 Phayathai Rd, Pathumwan, Bangkok 10330, Thailand)

  • Punya Charusiri

    (Department of Mineral Resources (DMR), King Rama VI Rd, Ratchatewi, Bangkok 10440, Thailand
    MESA Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand)

  • Hideaki Kurishima

    (School of Architecture, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan)

  • Koji Tokimatsu

    (Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan)

Abstract

The deployment of highly efficient cooling equipment is expected to promote energy savings and greenhouse gas emissions reductions in the tropics. A ground source heat pump (GSHP) has high energy-savings potential for use in Bangkok, Thailand. This study aimed to elucidate the operational conditions of a GSHP when used in Bangkok which was expected to achieve a higher efficiency than an air source heat pump (ASHP) over the long term. An operational experiment on a pilot facility in Bangkok and a simulation over a three-year GSHP operation were conducted. As a result of the operational experiment and simulation, the proposed operational condition was that the 90th percentile value of the hourly heat pump (HP) inlet temperature did not exceed 5 °C above that of the hourly annual ambient temperature during the third year of operation. When a GSHP designed based on this condition was utilized for a small government building, the required number of boreholes were 24, 4, and 3 for air-conditioned areas of 200, 40, and 25 m 2 , respectively, which achieved 40% energy savings. Thus, a small-scale GSHP in Bangkok designed based on the proposed condition can achieve high efficiency within space limitations.

Suggested Citation

  • Yutaro Shimada & Youhei Uchida & Isao Takashima & Srilert Chotpantarat & Arif Widiatmojo & Sasimook Chokchai & Punya Charusiri & Hideaki Kurishima & Koji Tokimatsu, 2020. "A Study on the Operational Condition of a Ground Source Heat Pump in Bangkok Based on a Field Experiment and Simulation," Energies, MDPI, vol. 13(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:274-:d:305565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arif Widiatmojo & Sasimook Chokchai & Isao Takashima & Yohei Uchida & Kasumi Yasukawa & Srilert Chotpantarat & Punya Charusiri, 2019. "Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand," Energies, MDPI, vol. 12(7), pages 1-22, April.
    2. Safa, Amir A. & Fung, Alan S. & Kumar, Rakesh, 2015. "Heating and cooling performance characterisation of ground source heat pump system by testing and TRNSYS simulation," Renewable Energy, Elsevier, vol. 83(C), pages 565-575.
    3. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    4. Sivak, Michael, 2009. "Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries," Energy Policy, Elsevier, vol. 37(4), pages 1382-1384, April.
    5. Sasimook Chokchai & Srilert Chotpantarat & Isao Takashima & Youhei Uchida & Arif Widiatmojo & Kasumi Yasukawa & Punya Charusiri, 2018. "A Pilot Study on Geothermal Heat Pump (GHP) Use for Cooling Operations, and on GHP Site Selection in Tropical Regions Based on a Case Study in Thailand," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Man, Yi & Yang, Hongxing & Wang, Jinggang, 2010. "Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2826-2833, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Filip Bartyzel & Tomasz Wegiel & Magdalena Kozień-Woźniak & Marek Czamara, 2022. "Numerical Simulation of Operating Parameters of the Ground Source Heat Pump," Energies, MDPI, vol. 15(1), pages 1-13, January.
    3. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Jose María Fernandez-Rodriguez & Angélica Lozano-Lunar & Antonio Rodero, 2022. "The Study of Soil Temperature Distribution for Very Low-Temperature Geothermal Energy Applications in Selected Locations of Temperate and Subtropical Climate," Energies, MDPI, vol. 15(9), pages 1-19, May.
    4. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    5. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    2. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. Zhang, Shuyang & Zhang, Lun & Zhang, Xiaosong, 2022. "Clustering based on dynamic time warping to extract typical daily patterns from long-term operation data of a ground source heat pump system," Energy, Elsevier, vol. 249(C).
    4. Shimada, Yutaro & Tokimatsu, Koji & Asawa, Takashi & Uchida, Youhei & Tomigashi, Akira & Kurishima, Hideaki, 2021. "Subsurface utilization as a heat sink for large-scale ground source heat pump: Case study in Bangkok, Thailand," Renewable Energy, Elsevier, vol. 180(C), pages 966-979.
    5. Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
    6. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    7. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    9. Guo, Min & Diao, Nairen & Man, Yi & Fang, Zhaohong, 2016. "Research and development of the hybrid ground-coupled heat pump technology in China," Renewable Energy, Elsevier, vol. 87(P3), pages 1033-1044.
    10. Seo, Youngguk & Seo, Un-Jong, 2021. "Ground source heat pump (GSHP) systems for horticulture greenhouses adjacent to highway interchanges: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    12. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    13. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    14. Byrne, Paul & Fournaison, Laurence & Delahaye, Anthony & Ait Oumeziane, Yacine & Serres, Laurent & Loulergue, Patrick & Szymczyk, Anthony & Mugnier, Daniel & Malaval, Jean-Luc & Bourdais, Romain & Gue, 2015. "A review on the coupling of cooling, desalination and solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 703-717.
    15. Mohannad Alkhraijah & Maad Alowaifeer & Mansour Alsaleh & Anas Alfaris & Daniel K. Molzahn, 2021. "The Effects of Social Distancing on Electricity Demand Considering Temperature Dependency," Energies, MDPI, vol. 14(2), pages 1-14, January.
    16. Battaglia, Vittoria & Vanoli, Laura & Verde, Clara & Nithiarasu, Perumal & Searle, Justin R., 2023. "Dynamic modelling of geothermal heat pump system coupled with positive-energy building," Energy, Elsevier, vol. 284(C).
    17. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    18. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    19. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    20. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:274-:d:305565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.