IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4312-d401511.html
   My bibliography  Save this article

Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano

Author

Listed:
  • Ilaria Vigna

    (Department of Energy, Politecnico di Torino, 10129 Torino, Italy
    Institute for Renewable Energy, Eurac research, 39100 Bolzano, Italy)

  • Jessica Balest

    (Institute for Renewable Energy, Eurac research, 39100 Bolzano, Italy)

  • Wilmer Pasut

    (Department of Environmental Science, Informatics and Statistics, Università Ca’ Foscari Venezia, 30123 Venezia, Italy)

  • Roberta Pernetti

    (Institute for Renewable Energy, Eurac research, 39100 Bolzano, Italy)

Abstract

The current energy system is dealing with an increasing share of renewable energy that, because of its intermittent availability, can affect the effectiveness of the energy supply. To cope with the problem, buildings need to become energy flexible. According to the definition given by IEA EBC Annex 67, energy flexibility is the ability of a building to manage its demand and generation according to local climate conditions, user needs and grid requirements. Users of energy-flexible buildings play a crucial role for an effective implementation, thus user acceptance and proper behaviour are important factors. In order to understand the current level of awareness on the topic and the general acceptance of the users, this paper presents the results of a large-scale survey distributed in the office buildings of the Province of Bolzano (Italy). This study investigates the information, experience, beliefs, and desires of the building users (i.e., office employees) with concepts and technologies dealing with energy flexibility, such as smart grids, smart appliances, and smart meters. This study identifies (i) the main socio-demographic characteristics associated to the information and desires about energy flexibility in office buildings, and (ii) the main conditions of social acceptance of flexible energy usages. Although this work is focused on a specific user type (i.e., office workers in the Province of Bolzano) and the results cannot be generalized, the analysis offers an interesting insight on the user perspectives and acceptance on energy flexibility and can be easily replicated. The results can be used at local level to provide insights for policies and strategies to encourage building users to be more flexible.

Suggested Citation

  • Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4312-:d:401511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verbong, Geert P.J. & Beemsterboer, Sjouke & Sengers, Frans, 2013. "Smart grids or smart users? Involving users in developing a low carbon electricity economy," Energy Policy, Elsevier, vol. 52(C), pages 117-125.
    2. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    4. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    5. Marszal-Pomianowska, Anna & Heiselberg, Per & Kalyanova Larsen, Olena, 2016. "Household electricity demand profiles – A high-resolution load model to facilitate modelling of energy flexible buildings," Energy, Elsevier, vol. 103(C), pages 487-501.
    6. Wohlfarth, Katharina & Worrell, Ernst & Eichhammer, Wolfgang, 2020. "Energy efficiency and demand response – two sides of the same coin?," Energy Policy, Elsevier, vol. 137(C).
    7. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    8. Ilaria Vigna & Roberta Pernetti & Giovanni Pernigotto & Andrea Gasparella, 2020. "Analysis of the Building Smart Readiness Indicator Calculation: A Comparative Case-Study with Two Panels of Experts," Energies, MDPI, vol. 13(11), pages 1-18, June.
    9. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    10. Julia Blasch & Nina Boogen & Claudio Daminato & Massimo Filippini, 2018. "Empower the consumer! Energy-related financial literacy and its socioeconomic determinants," CER-ETH Economics working paper series 18/289, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    11. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
    12. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    13. Shove, Elizabeth & Walker, Gordon, 2010. "Governing transitions in the sustainability of everyday life," Research Policy, Elsevier, vol. 39(4), pages 471-476, May.
    14. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    15. Mlecnik, Erwin & Parker, James & Ma, Zheng & Corchero, Cristina & Knotzer, Armin & Pernetti, Roberta, 2020. "Policy challenges for the development of energy flexibility services," Energy Policy, Elsevier, vol. 137(C).
    16. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    17. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    18. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    19. Li, Jiajia & Zhang, Jian & Zhang, Dayong & Ji, Qiang, 2019. "Does gender inequality affect household green consumption behaviour in China?," Energy Policy, Elsevier, vol. 135(C).
    20. Broman Toft, Madeleine & Schuitema, Geertje & Thøgersen, John, 2014. "Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology," Applied Energy, Elsevier, vol. 134(C), pages 392-400.
    21. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    22. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davor Stjelja & Juha Jokisalo & Risto Kosonen, 2022. "Scalable Room Occupancy Prediction with Deep Transfer Learning Using Indoor Climate Sensor," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    2. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    3. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    4. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    5. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    7. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    8. Jack, M.W. & Suomalainen, K. & Dew, J.J.W. & Eyers, D., 2018. "A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control," Applied Energy, Elsevier, vol. 211(C), pages 104-112.
    9. Chawla, Yash & Kowalska-Pyzalska, Anna & Skowrońska-Szmer, Anna, 2020. "Perspectives of smart meters’ roll-out in India: An empirical analysis of consumers’ awareness and preferences," Energy Policy, Elsevier, vol. 146(C).
    10. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    11. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    12. Goldbach, Kristin & Rotaru, Andreea Mihaela & Reichert, Stefan & Stiff, George & Gölz, Sebastian, 2018. "Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts," Energy Policy, Elsevier, vol. 115(C), pages 239-248.
    13. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    14. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    15. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    16. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
    17. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    18. IqtiyaniIlham, Nur & Hasanuzzaman, M. & Hosenuzzaman, M., 2017. "European smart grid prospects, policies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 776-790.
    19. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    20. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4312-:d:401511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.