IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3559-d382722.html
   My bibliography  Save this article

DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources

Author

Listed:
  • Rafal Dzikowski

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Łódź, Poland)

Abstract

Growing penetration of uncoordinated Distributed Energy Resources (DERs) in distribution systems is contributing to the increase of the load variability to be covered at the transmission system level. Forced, fast and substantial changes of power plants’ output powers increase the risk of their failures, which threatens the reliable and safe delivery of electricity to end users in the power system. The paper handles this issue with the use of DERs and proposes a bilevel coordination concept of day-ahead operation planning with new kind of bids to be submitted by Distribution System Operators (DSOs) to the Transmission System Operator (TSO). This concept includes the extension of the Unit Commitment problem solved by TSO and a new optimization model to be solved by DSO for planning a smoothed power profile at the Transmission–Distribution (T–D) interface. Both optimization models are described in the paper. As simulations show, the modified 24-h power profiles at T–D interfaces result in a reduction of the demand for operation flexibility at the transmission system level and, importantly, result in a decrease of the number of conventional power plants that are required to operate during a day. Additionally, it has been proved that the modified profiles reduce the congestions in the transmission network. Hence, the concept presented in the paper can be identified as an important step towards the transformation of power systems to low-emission and reliable systems with high share of DERs.

Suggested Citation

  • Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3559-:d:382722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    2. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    3. Hélène Le Cadre & Ilyès Mezghani & Anthony Papavasiliou, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," LIDAM Reprints CORE 2996, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    5. Leandro Lind & Rafael Cossent & José Pablo Chaves‐Ávila & Tomás Gómez San Román, 2019. "Transmission and distribution coordination in power systems with high shares of distributed energy resources providing balancing and congestion management services," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(6), November.
    6. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    7. Luca Petricca & Per Ohlckers & Xuyuan Chen, 2013. "The Future of Energy Storage Systems," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    8. Julio Pascual & Pablo Sanchis & Luis Marroyo, 2014. "Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management," Energies, MDPI, vol. 7(1), pages 1-28, January.
    9. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    10. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    11. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2018. "Adaptive Robust Optimization-Based Optimal Operation of Microgrids Considering Uncertainties in Arrival and Departure Times of Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-16, October.
    12. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    13. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    14. Reihani, Ehsan & Motalleb, Mahdi & Ghorbani, Reza & Saad Saoud, Lyes, 2016. "Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1372-1379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Palovic, 2022. "Coordination of power network operators as a game-theoretical problem," Bremen Energy Working Papers 0040, Bremen Energy Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Palovic, 2022. "Coordination of power network operators as a game-theoretical problem," Bremen Energy Working Papers 0040, Bremen Energy Research.
    2. Waldemar Niewiadomski & Aleksandra Baczyńska, 2021. "Advanced Flexibility Market for System Services Based on TSO–DSO Coordination and Usage of Distributed Resources," Energies, MDPI, vol. 14(17), pages 1-31, September.
    3. Hermann, Alexander & Jensen, Tue Vissing & Østergaard, Jacob & Kazempour, Jalal, 2022. "A complementarity model for electric power transmission-distribution coordination under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(1), pages 313-329.
    4. Attar, Mehdi & Repo, Sami & Mann, Pierre, 2022. "Congestion management market design- Approach for the Nordics and Central Europe," Applied Energy, Elsevier, vol. 313(C).
    5. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    6. Anibal Sanjab & H'el`ene Le Cadre & Yuting Mou, 2021. "TSO-DSOs Stable Cost Allocation for the Joint Procurement of Flexibility: A Cooperative Game Approach," Papers 2111.12830, arXiv.org.
    7. Schittekatte, Tim & Meeus, Leonardo, 2020. "Flexibility markets: Q&A with project pioneers," Utilities Policy, Elsevier, vol. 63(C).
    8. Talal Alazemi & Mohamed Darwish & Mohammed Radi, 2022. "TSO/DSO Coordination for RES Integration: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
    9. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    10. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    11. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    12. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    13. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Longxi Li, 2020. "Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches," Energies, MDPI, vol. 13(12), pages 1-22, June.
    15. Cabello, G.M. & Navas, S.J. & Vázquez, I.M. & Iranzo, A. & Pino, F.J., 2022. "Renewable medium-small projects in Spain: Past and present of microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Vosughi, Amirkhosro & Tamimi, Ali & King, Alexandra Beatrice & Majumder, Subir & Srivastava, Anurag K., 2022. "Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    18. Fatemeh Najibi & Dimitra Apostolopoulou & Eduardo Alonso, 2021. "TSO-DSO Coordination Schemes to Facilitate Distributed Resources Integration," Sustainability, MDPI, vol. 13(14), pages 1-29, July.
    19. Chapaloglou, Spyridon & Nesiadis, Athanasios & Iliadis, Petros & Atsonios, Konstantinos & Nikolopoulos, Nikos & Grammelis, Panagiotis & Yiakopoulos, Christos & Antoniadis, Ioannis & Kakaras, Emmanuel, 2019. "Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system," Applied Energy, Elsevier, vol. 238(C), pages 627-642.
    20. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3559-:d:382722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.