IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3424-d379640.html
   My bibliography  Save this article

A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data

Author

Listed:
  • Anaïs Machard

    (Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LASIE, UMR CNRMS 7356), La Rochelle Université, 23 Avenue Albert Einstein, 17000 La Rochelle, France
    Département Energie et Environnement, Centre Scientifique et Technique du Bâtiment (CSTB), 84 Avenue Jean Jaurès, Champs-sur-Marne, 77447 Marne-la-Vallée CEDEX 2, France)

  • Christian Inard

    (Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LASIE, UMR CNRMS 7356), La Rochelle Université, 23 Avenue Albert Einstein, 17000 La Rochelle, France)

  • Jean-Marie Alessandrini

    (Département Energie et Environnement, Centre Scientifique et Technique du Bâtiment (CSTB), 84 Avenue Jean Jaurès, Champs-sur-Marne, 77447 Marne-la-Vallée CEDEX 2, France)

  • Charles Pelé

    (Département Energie et Environnement, Centre Scientifique et Technique du Bâtiment (CSTB), 84 Avenue Jean Jaurès, Champs-sur-Marne, 77447 Marne-la-Vallée CEDEX 2, France)

  • Jacques Ribéron

    (Département Santé et Confort, Centre Scientifique et Technique du Bâtiment (CSTB), 84 Avenue Jean Jaurès, Champs-sur-Marne, 77447 Marne-la-Vallée CEDEX 2, France)

Abstract

With increasing mean and extreme temperatures due to climate change, it becomes necessary to use—not only future typical conditions—but future heatwaves in building thermal simulations as well. Future typical weather files are widespread, but few researchers have put together methodologies to reproduce future extreme conditions. Furthermore, climate uncertainties need to be considered and it is often difficult due to the lack of data accessibility. In this article, we propose a methodology to re-assemble future weather files—ready-to-use for building simulations—using data from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) dynamically downscaled regional climate multi-year projections. It is the first time that this database is used to assemble weather files for building simulations because of its recent availability. Two types of future weather files are produced: typical weather years (TWY) and heatwave events (HWE). Combined together, they can be used to fully assess building resilience to overheating in future climate conditions. A case study building in Paris is modelled to compare the impact of the different weather files on the indoor operative temperature of the building. The results confirm that it is better to use multiple types of future weather files, climate models, and or scenarios to fully grasp climate projection uncertainties.

Suggested Citation

  • Anaïs Machard & Christian Inard & Jean-Marie Alessandrini & Charles Pelé & Jacques Ribéron, 2020. "A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data," Energies, MDPI, vol. 13(13), pages 1-36, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3424-:d:379640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    2. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    3. Grignon-Massé, Laurent & Rivière, Philippe & Adnot, Jérôme, 2011. "Strategies for reducing the environmental impacts of room air conditioners in Europe," Energy Policy, Elsevier, vol. 39(4), pages 2152-2164, April.
    4. V. Masson & Colette Marchadier & Luc Adolphe & Rahim Aguejdad & P. Avner & Marc Bonhomme & Geneviève Bretagne & X. Briottet & B. Bueno & Cécile de Munck & O. Doukari & Stéphane Hallegatte & Julia Hida, 2014. "Adapting cities to climate change: A systemic modelling approach," Post-Print hal-01136215, HAL.
    5. Ke, Xinda & Wu, Di & Rice, Jennie & Kintner-Meyer, Michael & Lu, Ning, 2016. "Quantifying impacts of heat waves on power grid operation," Applied Energy, Elsevier, vol. 183(C), pages 504-512.
    6. Troup, Luke & Eckelman, Matthew J. & Fannon, David, 2019. "Simulating future energy consumption in office buildings using an ensemble of morphed climate data," Applied Energy, Elsevier, vol. 255(C).
    7. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    8. A. Lemonsu & Vincent Viguie & M. Daniel & V. Masson, 2015. "Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France)," Post-Print hal-01695088, HAL.
    9. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    10. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    11. Totschnig, G. & Hirner, R. & Müller, A. & Kranzl, L. & Hummel, M. & Nachtnebel, H.-P. & Stanzel, P. & Schicker, I. & Formayer, H., 2017. "Climate change impact and resilience in the electricity sector: The example of Austria and Germany," Energy Policy, Elsevier, vol. 103(C), pages 238-248.
    12. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "An Evaluation of Energy and Economic Efficiency in Residential Buildings Sector: A Multi-criteria Analisys on an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 185-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sana Sayadi & Jan Akander & Abolfazl Hayati & Mattias Gustafsson & Mathias Cehlin, 2023. "Comparison of Space Cooling Systems from Energy and Economic Perspectives for a Future City District in Sweden," Energies, MDPI, vol. 16(9), pages 1-22, April.
    2. Marco Manzan & Giovanni Bacaro & Andrea Nardini & Giulia Casagrande & Amedeo Pezzi & Francesco Petruzzellis & Enrico Tordoni & Giorgio Fontolan, 2022. "Climate Change Risk and Vulnerabilities Analysis in Trieste SECAP," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    3. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    4. Flores-Larsen, S. & Bre, F. & Hongn, M., 2022. "A performance-based method to detect and characterize heatwaves for building resilience analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassaghi, Hamed & Gurian, Patrick L. & Hoque, Simi, 2020. "Propagating downscaled future weather file uncertainties into building energy use," Applied Energy, Elsevier, vol. 278(C).
    2. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    3. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    4. Abhishek Gaur & Michael Lacasse, 2022. "Climate Data to Support the Adaptation of Buildings to Climate Change in Canada," Data, MDPI, vol. 7(4), pages 1-22, April.
    5. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    6. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    7. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    8. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    9. Klimenko, V.V. & Fedotova, E.V. & Tereshin, A.G., 2018. "Vulnerability of the Russian power industry to the climate change," Energy, Elsevier, vol. 142(C), pages 1010-1022.
    10. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Dasaraden Mauree & Silvia Coccolo & Amarasinghage Tharindu Dasun Perera & Vahid Nik & Jean-Louis Scartezzini & Emanuele Naboni, 2018. "A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    12. Hassan Bazazzadeh & Peiman Pilechiha & Adam Nadolny & Mohammadjavad Mahdavinejad & Seyedeh sara Hashemi safaei, 2021. "The Impact Assessment of Climate Change on Building Energy Consumption in Poland," Energies, MDPI, vol. 14(14), pages 1-17, July.
    13. Perera, A.T.D. & Wang, Z. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2021. "Towards realization of an Energy Internet: Designing distributed energy systems using game-theoretic approach," Applied Energy, Elsevier, vol. 283(C).
    14. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    15. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    16. Rodrigues, Eugénio & Fernandes, Marco S., 2020. "Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios," Applied Energy, Elsevier, vol. 259(C).
    17. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    19. Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
    20. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3424-:d:379640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.