IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3326-d378194.html
   My bibliography  Save this article

A Comprehensive Guide to Different Fracturing Technologies: A Review

Author

Listed:
  • M. S. Liew

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

  • Kamaluddeen Usman Danyaro

    (Offshore Engineering Centre, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

  • Noor Amila Wan Abdullah Zawawi

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

Abstract

Hydraulic fracturing has made the production of gas more economical. Shale gas possesses the potential to arise as a main natural gas source worldwide. It has been assessed that the top 42 countries, including the U.S., are predicted to own 7299 trillion cubic feet (tcf) of technically recoverable shale gas resources. The main goal of this paper is to serve as a guide of different shale gas extraction methods. The significance of these methods and possible pros and cons are determined. Each technique was explained with the support of literature review. Specifically, this paper revealed that some fracking methods such as pulsed arc electrohydraulic discharges (PAED), plasma stimulation and fracturing technology (PSF), thermal (cryogenic) fracturing, enhanced bacterial methanogenesis, and heating of rock mass are at the concept stage for conventional and other unconventional resources. Thus, these found to be significant for stimulating natural gas wells, which provides very good production results. This paper also discovered that fracking remains the recommended technique used by the oil and gas industries.

Suggested Citation

  • M. S. Liew & Kamaluddeen Usman Danyaro & Noor Amila Wan Abdullah Zawawi, 2020. "A Comprehensive Guide to Different Fracturing Technologies: A Review," Energies, MDPI, vol. 13(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3326-:d:378194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    2. Neil Gunningham, 2014. "A shale gas revolution for China?," Climate Policy, Taylor & Francis Journals, vol. 14(2), pages 302-320, March.
    3. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    4. Jennifer Winter & Sarah Dobson & G. Kent Fellows & Dexter Lam & Paul Craig, 2018. "An Overview of Global Liquefied Natural Gas Markets and Implications for Canada," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 11(21), July.
    5. Solarin, Sakiru Adebola & Gil-Alana, Luis A. & Lafuente, Carmen, 2020. "An investigation of long range reliance on shale oil and shale gas production in the U.S. market," Energy, Elsevier, vol. 195(C).
    6. Jingxuan Zhang & Xiangjun Liu & Xiaochen Wei & Lixi Liang & Jian Xiong & Wei Li, 2019. "Uncertainty Analysis of Factors Influencing Stimulated Fracture Volume in Layered Formation," Energies, MDPI, vol. 12(23), pages 1-24, November.
    7. Jan Kersting & Vicki Duscha & Joachim Schleich & Kimon Keramidas, 2018. "The impact of shale gas on the costs of climate policy," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 442-458, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    2. Sotirios Nik. Longinos & Lei Wang & Randy Hazlett, 2022. "Advances in Cryogenic Fracturing of Coalbed Methane Reservoirs with LN 2," Energies, MDPI, vol. 15(24), pages 1-21, December.
    3. Marek Jendryś & Andrzej Hadam & Mateusz Ćwiękała, 2021. "Directional Hydraulic Fracturing (DHF) of the Roof, as an Element of Rock Burst Prevention in the Light of Underground Observations and Numerical Modelling," Energies, MDPI, vol. 14(3), pages 1-18, January.
    4. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    5. Faisal Mehmood & Michael Z. Hou & Jianxing Liao & Muhammad Haris & Cheng Cao & Jiashun Luo, 2021. "Multiphase Multicomponent Numerical Modeling for Hydraulic Fracturing with N-Heptane for Efficient Stimulation in a Tight Gas Reservoir of Germany," Energies, MDPI, vol. 14(11), pages 1-26, May.
    6. Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Zhan, Lina, 2019. "Assessing the sustainability of the shale gas industry by combining DPSIRM model and RAGA-PP techniques: An empirical analysis of Sichuan and Chongqing, China," Energy, Elsevier, vol. 176(C), pages 353-364.
    2. Yang, Yan & Wang, Limao & Fang, Yebing & Mou, Chufu, 2017. "Integrated value of shale gas development: A comparative analysis in the United States and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1465-1478.
    3. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    4. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    5. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    6. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    7. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    8. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    9. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    10. Reda Abdel Azim & Saad Alatefi & Ahmad Alkouh, 2023. "A Coupled Poro-Elastic Fluid Flow Simulator for Naturally Fractured Reservoirs," Energies, MDPI, vol. 16(18), pages 1-26, September.
    11. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.
    12. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    13. Blundell, Wesley & Kokoza, Anatolii, 2022. "Natural gas flaring, respiratory health, and distributional effects," Journal of Public Economics, Elsevier, vol. 208(C).
    14. Wang, Qiang & Li, Rongrong, 2016. "Impact of cheaper oil on economic system and climate change: A SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 925-931.
    15. Centner, Terence J., 2016. "Reducing pollution at five critical points of shale gas production: Strategies and institutional responses," Energy Policy, Elsevier, vol. 94(C), pages 40-46.
    16. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    17. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    18. Temitope Love Baiyegunhi & Christopher Baiyegunhi & Benedict Kinshasa Pharoe, 2022. "Global Research Trends on Shale Gas from 2010–2020 Using a Bibliometric Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    19. Menglei Li & Chaomo Zhang, 2023. "An Improved Method to Accurately Estimate TOC of Shale Reservoirs and Coal-Measures," Energies, MDPI, vol. 16(6), pages 1-23, March.
    20. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3326-:d:378194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.