IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4857-d264490.html
   My bibliography  Save this article

Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture

Author

Listed:
  • Xuedong Guo

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Xing Chen

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Yingsong Li

    (School of Transportation, Changchun college of architecture, Changchun 130604, China)

  • Zhun Li

    (School of Transportation, Jilin University, Changchun 130022, China)

  • Wei Guo

    (School of Transportation, Jilin University, Changchun 130022, China)

Abstract

The increase in cost of bitumen and polymer modifiers and the importance of silicon waste material management have encouraged pavement researchers to use reusable sustainable sources. Oil shale waste powder (OSP) is considered a silicon waste material, and when used in pavement prevents leaching. However, OSP, as an acidic inorganic material, has compatibility issues with asphalt, and its use with ashpalt should be considered carefully. This paper investigates the pavement performance and modification mechanism of OSP and silane coupling agent (SCA) composite modified asphalt and asphalt mixture according to conventional physical property tests: thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and a pavement performance test. The test results showed that the incorporation of OSP and SCA improved the overall properties of asphalt and asphalt mixture and the direct mixing method is more effective than the surface pretreatment method for the modification of composite modification of asphalt. Moreover, the FTIR test and DSC test indicated that the incorporation of OSP and SCA creates new chemical bonds and changes the form and quantity of the crystalline component and the transformation of components in the bitumen.

Suggested Citation

  • Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4857-:d:264490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Punyaslok Rath & Joshua E. Love & William G. Buttlar & Henrique Reis, 2019. "Performance Analysis of Asphalt Mixtures Modified with Ground Tire Rubber Modifiers and Recycled Materials," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    2. Luzana Brasileiro & Fernando Moreno-Navarro & Raúl Tauste-Martínez & Jose Matos & Maria del Carmen Rubio-Gámez, 2019. "Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    3. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    4. Juan J. Galan & Luís M. Silva & Ignacio Pérez & Ana R. Pasandín, 2019. "Mechanical Behavior of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste: A Design of Experiments Approach," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
    5. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazen J. Al-Kheetan, 2023. "Waste Not, Want Not: Sustainable Use of Anti-Stripping-Treated Waste Ceramic in Superpave Asphalt Mixtures," Sustainability, MDPI, vol. 15(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wensheng Wang & Yongchun Cheng & Heping Chen & Guojin Tan & Zehua Lv & Yunshuo Bai, 2019. "Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    2. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    3. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    4. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    5. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    6. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    7. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    8. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    9. Reda Abdel Azim & Saad Alatefi & Ahmad Alkouh, 2023. "A Coupled Poro-Elastic Fluid Flow Simulator for Naturally Fractured Reservoirs," Energies, MDPI, vol. 16(18), pages 1-26, September.
    10. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.
    11. Blundell, Wesley & Kokoza, Anatolii, 2022. "Natural gas flaring, respiratory health, and distributional effects," Journal of Public Economics, Elsevier, vol. 208(C).
    12. Wang, Qiang & Li, Rongrong, 2016. "Impact of cheaper oil on economic system and climate change: A SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 925-931.
    13. Centner, Terence J., 2016. "Reducing pollution at five critical points of shale gas production: Strategies and institutional responses," Energy Policy, Elsevier, vol. 94(C), pages 40-46.
    14. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    15. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    16. Temitope Love Baiyegunhi & Christopher Baiyegunhi & Benedict Kinshasa Pharoe, 2022. "Global Research Trends on Shale Gas from 2010–2020 Using a Bibliometric Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    17. Guanglin Pi & Xiucheng Dong & Cong Dong & Jie Guo & Zhengwei Ma, 2015. "The Status, Obstacles and Policy Recommendations of Shale Gas Development in China," Sustainability, MDPI, vol. 7(3), pages 1-20, February.
    18. Guliyev, Farid, 2020. "Trump’s “America first” energy policy, contingency and the reconfiguration of the global energy order," Energy Policy, Elsevier, vol. 140(C).
    19. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    20. Mandadige Samintha Anne Perera & Kadinappuli Hewage Suresh Madushan Sampath & Pathegama Gamage Ranjith & Tharaka Dilanka Rathnaweera, 2018. "Effects of Pore Fluid Chemistry and Saturation Degree on the Fracability of Australian Warwick Siltstone," Energies, MDPI, vol. 11(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4857-:d:264490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.