IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3298-d377123.html
   My bibliography  Save this article

Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach

Author

Listed:
  • Joanna Rucińska

    (Division of Air Conditioning and Heating, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland)

  • Anna Komerska

    (Division of Air Conditioning and Heating, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland)

  • Jerzy Kwiatkowski

    (District Heating and Natural Gas Systems Division, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland)

Abstract

The decarbonisation goal stated in the Energy Performance of Buildings Directive (EPBD) regarding the building sector will be achieved only if the whole building life-cycle is considered. To fulfil this requirement, a benchmark based on the life cycle assessment (LCA) must be integrated into the early planning phase of buildings by designers. The estimation of such indicators requires the development of a database of building assessments. In this study, an LCA of 11 office buildings in Poland was used to set average values that can be used as a benchmark. The LCA methodology based on the Building Research Establishment Environmental Assessment Method (BREEAM) certification was used. The analysis did not concentrate on one type of office building. The main objective was to investigate a possible range of total Global Warming Potential (GWP) index values normalized to the usable unit floor area. The importance of the GWP of individual life-cycle phases was also considered. The study shows that the used methodology is adequate for LCA benchmark estimation to set preliminary average values for office buildings in Poland.

Suggested Citation

  • Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3298-:d:377123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ignacio Zabalza & Sabina Scarpellini & Alfonso Aranda & Eva Llera & Alberto Jáñez, 2013. "Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain," Energies, MDPI, vol. 6(8), pages 1-21, August.
    2. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2013. "Life-cycle energy of residential buildings in China," Energy Policy, Elsevier, vol. 62(C), pages 656-664.
    3. Pedro Nuñez-Cacho & Jaroslaw Górecki & Valentín Molina-Moreno & Francisco A. Corpas-Iglesias, 2018. "What Gets Measured, Gets Done: Development of a Circular Economy Measurement Scale for Building Industry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    4. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Majewski & Anna Komerska & Jerzy Kwiatkowski & Agata Malak-Rawlikowska & Adam Wąs & Piotr Sulewski & Marlena Gołaś & Kinga Pogodzińska & Jean-Loup Lecoeur & Barbara Tocco & Áron Török & Michele, 2020. "Are Short Food Supply Chains More Environmentally Sustainable than Long Chains? A Life Cycle Assessment (LCA) of the Eco-Efficiency of Food Chains in Selected EU Countries," Energies, MDPI, vol. 13(18), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Antonio Ángel Rodríguez Serrano & Santiago Porras Álvarez, 2016. "Life Cycle Assessment in Building: A Case Study on the Energy and Emissions Impact Related to the Choice of Housing Typologies and Construction Process in Spain," Sustainability, MDPI, vol. 8(3), pages 1-29, March.
    3. Ionel-Sorinel Vasilca & Madlena Nen & Oana Chivu & Valentin Radu & Cezar-Petre Simion & Nicolae Marinescu, 2021. "The Management of Environmental Resources in the Construction Sector: An Empirical Model," Energies, MDPI, vol. 14(9), pages 1-19, April.
    4. Daozhi Zhao & Jiaqin Hao & Cejun Cao & Hongshuai Han, 2019. "Evolutionary Game Analysis of Three-Player for Low-Carbon Production Capacity Sharing," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    5. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    6. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    7. Zhang, Yang & Yan, Da & Hu, Shan & Guo, Siyue, 2019. "Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach," Energy Policy, Elsevier, vol. 134(C).
    8. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    9. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    10. Pedro Núñez-Cacho & Juan Carlos Leyva-Díaz & Jorge Sánchez-Molina & Rody Van der Gun, 2020. "Plastics and sustainable purchase decisions in a circular economy: The case of Dutch food industry," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    11. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    12. Elena Aurelia Botezat & Anca Otilia Dodescu & Sebastian Văduva & Silvia Liana Fotea, 2018. "An Exploration of Circular Economy Practices and Performance Among Romanian Producers," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    13. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    14. Xunzhi Yin & Jiaqi Yu & Qi Dong & Yongheng Jia & Cheng Sun, 2020. "Energy Sustainability of Rural Residential Buildings with Bio-Based Building Fabric in Northeast China," Energies, MDPI, vol. 13(21), pages 1-14, November.
    15. Roope Husgafvel & Daishi Sakaguchi, 2021. "Circular Economy Development in the Construction Sector in Japan," World, MDPI, vol. 3(1), pages 1-26, December.
    16. Leonora Charlotte Malabi Eberhardt & Anne van Stijn & Freja Nygaard Rasmussen & Morten Birkved & Harpa Birgisdottir, 2020. "Development of a Life Cycle Assessment Allocation Approach for Circular Economy in the Built Environment," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    17. Mária Moresová & Mariana Sedliačiková & Jarmila Schmidtová & Iveta Hajdúchová, 2020. "Green Development in the Construction of Family Houses in Urban and Rural Settlements in Slovakia," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    18. Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
    19. Abd Rashid, Ahmad Faiz & Yusoff, Sumiani, 2015. "A review of life cycle assessment method for building industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 244-248.
    20. David Božiček & Roman Kunič & Aleš Krainer & Uroš Stritih & Mateja Dovjak, 2023. "Mutual Influence of External Wall Thermal Transmittance, Thermal Inertia, and Room Orientation on Office Thermal Comfort and Energy Demand," Energies, MDPI, vol. 16(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3298-:d:377123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.