IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2571-d360075.html
   My bibliography  Save this article

Assessment and Mitigation of Electric Vehicle Charging Demand Impact to Transformer Aging for an Apartment Complex

Author

Listed:
  • Shin-Ki Hong

    (School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea)

  • Sung Gu Lee

    (Department of Electrical Engineering, Dong-A University, Busan 49315, Korea)

  • Myungchin Kim

    (School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea)

Abstract

Due to the increasing use of Electric Vehicles (EVs), the effect of the EV charging power demand on the reliability of the power system infrastructure needs to be addressed. In apartment complexes, which have emerged as a common residential type in metropolitan areas and highly populated districts, high charging demand could result in substantial stress to distribution networks. In this work, the effect of EV charging power demand in an apartment complex on the aging of the Distribution Transformer (DT) is studied. A methodology based on the stochastic characterization of vehicle usage profiles and user charging patterns is developed to obtain realistic EV charging demand profiles. Based on the modeled EV charging profile and the transformer thermal model, the effect of different EV penetration ratios on DT aging for an apartment complex in the Republic of Korea is studied. Results for an EV penetration ratio of up to 30% indicated that DT aging could be accelerated by up to 40%, compared to the case without EV charging. To mitigate this accelerated DT aging caused by EV charging, the effectiveness of two integration approaches of Photovoltaic (PV) sources was studied. Based on a case study that included a realistic PV generation profile, it was demonstrated that a significant contribution to DT reliability could be achieved via the operation of PV sources. A more apparent contribution of PV integration was observed with an energy storage installation at higher EV penetration ratios. At an EV penetration ratio of 30%, a maximum decrease of 41.8% in the loss-of-life probability of the DT was achieved. The effects of different PV integration approaches and power management details on DT aging were also studied. The results demonstrate that the EV charging demand could introduce a significant level of stress to DTs and that this impact can be effectively mitigated by installing PV sources. These observations are expected to contribute toward the effective planning of power system infrastructures that support the design of sustainable cities with the widespread use of EVs.

Suggested Citation

  • Shin-Ki Hong & Sung Gu Lee & Myungchin Kim, 2020. "Assessment and Mitigation of Electric Vehicle Charging Demand Impact to Transformer Aging for an Apartment Complex," Energies, MDPI, vol. 13(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2571-:d:360075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    2. Shokrzadeh, Shahab & Ribberink, Hajo & Rishmawi, Issa & Entchev, Evgueniy, 2017. "A simplified control algorithm for utilities to utilize plug-in electric vehicles to reduce distribution transformer overloading," Energy, Elsevier, vol. 133(C), pages 1121-1131.
    3. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    4. Muhammad Azmat & Sebastian Kummer, 2020. "Potential applications of unmanned ground and aerial vehicles to mitigate challenges of transport and logistics-related critical success factors in the humanitarian supply chain," Asian Journal of Sustainability and Social Responsibility, Springer, vol. 5(1), pages 1-22, December.
    5. Ugochukwu Kenechi Elinwa & Mehrshad Radmehr & John Emmanuel Ogbeba, 2017. "Alternative Energy Solutions Using BIPV in Apartment Buildings of Developing Countries: A Case Study of North Cyprus," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    6. Dong-Shang Chang & Sheng-Hung Chen & Chia-Wei Hsu & Allen H. Hu & Gwo-Hshiung Tzeng, 2015. "Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective," Sustainability, MDPI, vol. 7(9), pages 1-25, August.
    7. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    8. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeshwar Mahanta, 2018. "Impact of Electric Vehicle Charging Station Load on Distribution Network," Energies, MDPI, vol. 11(1), pages 1-25, January.
    9. Aadil Latif & Wolfgang Gawlik & Peter Palensky, 2016. "Quantification and Mitigation of Unfairness in Active Power Curtailment of Rooftop Photovoltaic Systems Using Sensitivity Based Coordinated Control," Energies, MDPI, vol. 9(6), pages 1-16, June.
    10. Eunil Park & Ki Joon Kim & Sang Jib Kwon & Taeil Han & Wongi S. Na & Angel P. Del Pobil, 2017. "Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    3. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    4. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2020. "Machine Learning-Based Management of Electric Vehicles Charging: Towards Highly-Dispersed Fast Chargers," Energies, MDPI, vol. 13(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    2. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    3. Byungsung Lee & Haesung Lee & Hyun Ahn, 2020. "Improving Load Forecasting of Electric Vehicle Charging Stations Through Missing Data Imputation," Energies, MDPI, vol. 13(18), pages 1-15, September.
    4. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    5. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    6. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    7. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    8. Muhammed Sait Aydin & Sahban W. Alnaser & Sereen Z. Althaher, 2022. "Using OLTC-Fitted Distribution Transformer to Increase Residential PV Hosting Capacity: Decentralized Voltage Management Approach," Energies, MDPI, vol. 15(13), pages 1-19, July.
    9. Kuang-Hua Hu & Fu-Hsiang Chen & Gwo-Hshiung Tzeng, 2016. "Evaluating the Improvement of Sustainability of Sports Industry Policy Based on MADM," Sustainability, MDPI, vol. 8(7), pages 1-21, June.
    10. Anna Bać & Magdalena Nemś & Artur Nemś & Jacek Kasperski, 2019. "Sustainable Integration of a Solar Heating System into a Single-Family House in the Climate of Central Europe—A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    11. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    12. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    13. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    14. Yuanyuan Wu & Feng Zhu, 2021. "Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    15. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.
    16. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    17. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Namje Park, 2020. "Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting," Energies, MDPI, vol. 13(11), pages 1-23, May.
    18. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    19. Ildar Daminov & Rémy Rigo-Mariani & Raphael Caire & Anton Prokhorov & Marie-Cécile Alvarez-Hérault, 2021. "Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime," Energies, MDPI, vol. 14(5), pages 1-27, March.
    20. Mayank Jha & Frede Blaabjerg & Mohammed Ali Khan & Varaha Satya Bharath Kurukuru & Ahteshamul Haque, 2019. "Intelligent Control of Converter for Electric Vehicles Charging Station," Energies, MDPI, vol. 12(12), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2571-:d:360075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.