IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p81-d301031.html
   My bibliography  Save this article

Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study

Author

Listed:
  • Małgorzata Fedorczak-Cisak

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland)

  • Katarzyna Nowak

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland)

  • Marcin Furtak

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

Improving the energy efficiency of buildings is among the most urgent social development tasks due to the scale of energy consumption in this industry. At the same time, it is essential to meet high requirements for indoor environmental quality and thermal comfort. The issue of overheating is most often analysed in summer but it also occurs in transition seasons, when the cooling systems do not operate. The paper attempts to evaluate the effectiveness of external mobile shading elements on the microclimate of rooms with large glazed areas in the transition season. Passive solutions, such as shading elements, which limit the increase of indoor temperature, do not always allow the acquisition and maintenance of comfortable solutions for the duration of the season, as demonstrated by the authors. Temporary cooling of the rooms may be necessary to maintain comfortable conditions for the users, or other solutions should be devised to improve comfort (e.g., reduction of clothing insulation characteristics). The novelty of the study consists in the analysis of comfort in a “nearly zero energy consumption” building (NZEB) during a period not analyzed by other scientists. This is a transition period during which heating/cooling systems do not operate. The research task set by the authors involved the assessment of the possibility to reduce office space overheating in the transition season (spring) by using external shading equipment in rooms with large glazed areas. An additional research task aimed at checking the extent to which user behaviour, such as reduction in clothing insulation characteristics, can improve comfort in overheated rooms. The results of the tests reveal that the difference in the ambient air temperature between a room with external venetian blinds and an identical room with no venetian blinds in the transition season, i.e., from 27 March to 6 April 2017, ranged from 12.3 to 2.1 °C. The use of a shading system (external venetian blinds positioned at an angle of 45°) reduced the number of discomfort hours by 92% (during working hours) compared to the room without external venetian blinds. A reduction in the thermal insulation of the clothes worn by people working in the room with no venetian blinds helped to reduce the number of discomfort hours by 31%.

Suggested Citation

  • Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:81-:d:301031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/81/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/81/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    2. Li, Nan & Li, Juncheng & Fan, Ruijuan & Jia, Hongyuan, 2015. "Probability of occupant operation of windows during transition seasons in office buildings," Renewable Energy, Elsevier, vol. 73(C), pages 84-91.
    3. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    4. Yaolin Lin & Shiquan Zhou & Wei Yang & Chun-Qing Li, 2018. "Design Optimization Considering Variable Thermal Mass, Insulation, Absorptance of Solar Radiation, and Glazing Ratio Using a Prediction Model and Genetic Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henriqueta Teixeira & Maria da Glória Gomes & António Moret Rodrigues & Júlia Pereira, 2021. "In-Service Thermal and Luminous Performance Monitoring of a Refurbished Building with Solar Control Films on the Glazing System," Energies, MDPI, vol. 14(5), pages 1-23, March.
    2. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    3. Przemysław Markiewicz-Zahorski & Joanna Rucińska & Małgorzata Fedorczak-Cisak & Michał Zielina, 2021. "Building Energy Performance Analysis after Changing Its Form of Use from an Office to a Residential Building," Energies, MDPI, vol. 14(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Gomes, Álvaro, 2014. "Improving thermal performance of automatically generated floor plans using a geometric variable sequential optimization procedure," Applied Energy, Elsevier, vol. 132(C), pages 200-215.
    2. Przemysław Markiewicz-Zahorski & Joanna Rucińska & Małgorzata Fedorczak-Cisak & Michał Zielina, 2021. "Building Energy Performance Analysis after Changing Its Form of Use from an Office to a Residential Building," Energies, MDPI, vol. 14(3), pages 1-24, January.
    3. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    4. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    5. Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
    6. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    7. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    8. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    9. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    10. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    11. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    12. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    13. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    14. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    16. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    17. Yuting Qi & Queena Qian & Frits Meijer & Henk Visscher, 2020. "Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study," Energies, MDPI, vol. 13(10), pages 1-19, May.
    18. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    19. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    20. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:81-:d:301031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.