IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p102-d301476.html
   My bibliography  Save this article

Influence of Oxidant Agent on Syngas Composition: Gasification of Hazelnut Shells through an Updraft Reactor

Author

Listed:
  • Francesco Gallucci

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Raffaele Liberatore

    (ENEA-Casaccia Reserch Centre, Via Anguillarese, 301, 0123 Rome, Italy)

  • Luca Sapegno

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Edoardo Volponi

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Paolo Venturini

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Franco Rispoli

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Enrico Paris

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Monica Carnevale

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), Via della Pascolare 16, 00015 Monterotondo (Rome), Italy)

  • Andrea Colantoni

    (Department of Agriculture and Forestry Science, Tuscia University, Via San Camillo de Lellis snc, 01100 Viterbo, Italy)

Abstract

This work aims to study the influence of an oxidant agent on syngas quality. A series of tests using air and steam as oxidant agents have been performed and the results compared with those of a pyrolysis test used as a reference. Tests were carried out at Sapienza University of Rome, using an updraft reactor. The reactor was fed with hazelnut shells, waste biomass commonly available in some parts of Italy. Temperature distribution, syngas composition and heating value, and producible energy were measured. Air and steam gasification tests produced about the same amount of syngas flow, but with a different quality. The energy flow in air gasification had the smallest measurement during the experiments. On the contrary, steam gasification produced a syngas flow with higher quality (13.1 MJ/Nm 3 ), leading to the best values of energy flow (about 5.4 MJ/s vs. 3.3 MJ/s in the case of air gasification). From the cold gas efficiency point of view, steam gasification is still the best solution, even considering the effect of the enthalpy associated with the steam injected within the gasification reactor.

Suggested Citation

  • Francesco Gallucci & Raffaele Liberatore & Luca Sapegno & Edoardo Volponi & Paolo Venturini & Franco Rispoli & Enrico Paris & Monica Carnevale & Andrea Colantoni, 2019. "Influence of Oxidant Agent on Syngas Composition: Gasification of Hazelnut Shells through an Updraft Reactor," Energies, MDPI, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:102-:d:301476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    2. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    3. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    4. Yogesh Mehta & Cecilia Richards, 2017. "Gasification Performance of a Top-Lit Updraft Cook Stove," Energies, MDPI, vol. 10(10), pages 1-11, October.
    5. Domenico Borello & Antonio M. Pantaleo & Michele Caucci & Benedetta De Caprariis & Paolo De Filippis & Nilay Shah, 2017. "Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis," Energies, MDPI, vol. 10(12), pages 1-17, November.
    6. Jiu Huang & Klaus Gerhard Schmidt & Zhengfu Bian, 2011. "Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking," Energies, MDPI, vol. 4(8), pages 1-15, August.
    7. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    8. Mario Sisinni & Andrea Di Carlo & Enrico Bocci & Andrea Micangeli & Vincenzo Naso, 2013. "Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO 2 Sorbent," Energies, MDPI, vol. 6(7), pages 1-15, July.
    9. Ricardo A. Narváez C. & Richard Blanchard & Roger Dixon & Valeria Ramírez & Diego Chulde, 2018. "Low-Cost Syngas Shifting for Remote Gasifiers: Combination of CO 2 Adsorption and Catalyst Addition in a Novel and Simplified Packed Structure," Energies, MDPI, vol. 11(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Zhang, Guozhao & Liu, Hao & Wang, Jia & Wu, Baojia, 2018. "Catalytic gasification characteristics of rice husk with calcined dolomite," Energy, Elsevier, vol. 165(PB), pages 1173-1177.
    3. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    4. Quintero-Coronel, D.A. & Lenis-Rodas, Y.A. & Corredor, L.A. & Perreault, P. & Gonzalez-Quiroga, A., 2021. "Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocity," Energy, Elsevier, vol. 220(C).
    5. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    6. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    7. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
    8. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    10. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    12. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    13. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    14. Banerjee, Debarun & Kushwaha, Nidhi & Shetti, Nagaraj P. & Aminabhavi, Tejraj M. & Ahmad, Ejaz, 2022. "Green hydrogen production via photo-reforming of bio-renewable resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    16. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    17. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    19. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    20. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:102-:d:301476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.