IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1718-d228835.html
   My bibliography  Save this article

Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO 2 into Red Gold Astaxanthin: The Potential Applicability

Author

Listed:
  • Min Eui Hong

    (Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Won Seok Chang

    (Frontier R&D Institute, Korea District Heating Corp., 92 Gigok-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17099, Korea)

  • Anil Kumar Patel

    (Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Mun Sei Oh

    (Frontier R&D Institute, Korea District Heating Corp., 92 Gigok-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17099, Korea)

  • Jong Jun Lee

    (Frontier R&D Institute, Korea District Heating Corp., 92 Gigok-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17099, Korea)

  • Sang Jun Sim

    (Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

Abstract

The combinatorial approach of anthropogenic activities and CO 2 sequestration is becoming a global research trend to alleviate the average global temperature. Although microalgae have been widely used to capture CO 2 from industrial flue gas, the application of bioproducts was limited to bioenergy due to the controversy over the quality and safety of the products in the food and feed industry. Herein, the waste CO 2 emitted from large point sources was directly captured using astaxanthin-hyperproducing microalgae Haematococcus pluvialis . Astaxanthin production was successfully carried out using the hypochlorous acid water-based axenic culture process under highly contamination-prone outdoor conditions. Consequently, after 36 days of autotrophic induction, the productivity of biomass and astaxanthin of H. pluvialis (the mutant) reached 0.127 g L −1 day −1 and 5.47 mg L −1 day −1 under high summer temperatures, respectively, which was 38% and 48% higher than that of wild type cell. After grinding the wet astaxanthin-enriched biomass, the extract was successfully approved by compliance validation testing from Korea Food and Drug Administration. The assorted feed improved an immune system of the poultry without causing any side effects. The flue gas-based bioproducts could certainly be used for health functional food for animals in the future.

Suggested Citation

  • Min Eui Hong & Won Seok Chang & Anil Kumar Patel & Mun Sei Oh & Jong Jun Lee & Sang Jun Sim, 2019. "Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO 2 into Red Gold Astaxanthin: The Potential Applicability," Energies, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1718-:d:228835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kao, Chien-Ya & Chiu, Sheng-Yi & Huang, Tzu-Ting & Dai, Le & Hsu, Ling-Kang & Lin, Chih-Sheng, 2012. "Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading," Applied Energy, Elsevier, vol. 93(C), pages 176-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byung Sun Yu & Young Joon Sung & Min Eui Hong & Sang Jun Sim, 2021. "Improvement of Photoautotrophic Algal Biomass Production after Interrupted CO 2 Supply by Urea and KH 2 PO 4 Injection," Energies, MDPI, vol. 14(3), pages 1-14, February.
    2. Daniel Borowiak & Małgorzata Krzywonos, 2022. "Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors," Energies, MDPI, vol. 15(15), pages 1-48, July.
    3. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    2. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    3. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    4. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    5. Srinuanpan, Sirasit & Cheirsilp, Benjamas & Kitcha, Wannakorn & Prasertsan, Poonsuk, 2017. "Strategies to improve methane content in biogas by cultivation of oleaginous microalgae and the evaluation of fuel properties of the microalgal lipids," Renewable Energy, Elsevier, vol. 113(C), pages 1229-1241.
    6. Khan, Shakeel A. & Malla, Fayaz A. & Rashmi, & Malav, Lal Chand & Gupta, Navindu & Kumar, Amit, 2018. "Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids," Energy, Elsevier, vol. 150(C), pages 153-163.
    7. Meier, L. & Barros, P. & Torres, A. & Vilchez, C. & Jeison, D., 2017. "Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod," Renewable Energy, Elsevier, vol. 106(C), pages 17-23.
    8. Sun, Shiqing & Ge, Zhigang & Zhao, Yongjun & Hu, Changwei & Zhang, Hui & Ping, Lifeng, 2016. "Performance of CO2 concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge," Energy, Elsevier, vol. 97(C), pages 229-237.
    9. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
    11. Lim, Yi An & Chong, Meng Nan & Foo, Su Chern & Ilankoon, I.M.S.K., 2021. "Analysis of direct and indirect quantification methods of CO2 fixation via microalgae cultivation in photobioreactors: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    13. Meier, Leslie & Martínez, Carlos & Vílchez, Carlos & Bernard, Olivier & Jeison, David, 2019. "Evaluation of the feasibility of photosynthetic biogas upgrading: Simulation of a large-scale system," Energy, Elsevier, vol. 189(C).
    14. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    15. Xie, Yujiao & Ma, Chunyan & Lu, Xiaohua & Ji, Xiaoyan, 2016. "Evaluation of imidazolium-based ionic liquids for biogas upgrading," Applied Energy, Elsevier, vol. 175(C), pages 69-81.
    16. Chiu-Mei Kuo & Yu-Ling Sun & Cheng-Han Lin & Chao-Hsu Lin & Hsi-Tien Wu & Chih-Sheng Lin, 2021. "Cultivation and Biorefinery of Microalgae ( Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review," Sustainability, MDPI, vol. 13(23), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1718-:d:228835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.