IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1510-d224789.html
   My bibliography  Save this article

Combining Weather Stations for Electric Load Forecasting

Author

Listed:
  • Masoud Sobhani

    (Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, 28223 Charlotte, NC, USA)

  • Allison Campbell

    (Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, 28223 Charlotte, NC, USA)

  • Saurabh Sangamwar

    (Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, 28223 Charlotte, NC, USA)

  • Changlin Li

    (Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, 28223 Charlotte, NC, USA)

  • Tao Hong

    (Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, 28223 Charlotte, NC, USA)

Abstract

Weather is a key factor affecting electricity demand. Many load forecasting models rely on weather variables. Weather stations provide point measurements of weather conditions in a service area. Since the load is spread geographically, a single weather station may not sufficiently explain the variations of the load over a vast area. Therefore, a proper combination of multiple weather stations plays a vital role in load forecasting. This paper answers the question: given a number of weather stations, how should they be combined for load forecasting? Simple averaging has been a commonly used and effective method in the literature. In this paper, we compared the performance of seven alternative methods with simple averaging as the benchmark using the data of the Global Energy Forecasting Competition 2012. The results demonstrate that some of the methods outperform the benchmark in combining weather stations. In addition, averaging the forecasts from these methods outperforms most individual methods.

Suggested Citation

  • Masoud Sobhani & Allison Campbell & Saurabh Sangamwar & Changlin Li & Tao Hong, 2019. "Combining Weather Stations for Electric Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1510-:d:224789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    2. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    3. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    4. Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
    5. Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
    6. Charlton, Nathaniel & Singleton, Colin, 2014. "A refined parametric model for short term load forecasting," International Journal of Forecasting, Elsevier, vol. 30(2), pages 364-368.
    7. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    8. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    9. Jingrui Xie & Tao Hong, 2017. "Wind Speed for Load Forecasting Models," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    10. Dordonnat, V. & Pichavant, A. & Pierrot, A., 2016. "GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1005-1011.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Caro & Jesús Juan, 2020. "Short-Term Load Forecasting for Spanish Insular Electric Systems," Energies, MDPI, vol. 13(14), pages 1-26, July.
    2. Xuguang Han & Jingming Su & Yan Hong & Pingshun Gong & Danping Zhu, 2022. "Mid- to Long-Term Electric Load Forecasting Based on the EMD–Isomap–Adaboost Model," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    3. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Mohamad Abou Houran & Varun Kumar & Dinesh Kumar & Saurabh Mani Tripathi & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan, 2023. "A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection," Energies, MDPI, vol. 16(2), pages 1-23, January.
    4. Emmanuel Escobar-Avalos & Martín A. Rodríguez-Licea & Horacio Rostro-González & Allan G. Soriano-Sánchez & Francisco J. Pérez-Pinal, 2021. "A Comparison of Integrated Filtering and Prediction Methods for Smart Grids," Energies, MDPI, vol. 14(7), pages 1-16, April.
    5. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    6. Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
    7. Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
    8. Ismail Shah & Hasnain Iftikhar & Sajid Ali, 2020. "Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique," Forecasting, MDPI, vol. 2(2), pages 1-17, May.
    9. Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    2. Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
    3. Jingrui Xie & Tao Hong, 2017. "Wind Speed for Load Forecasting Models," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    4. Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
    5. Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
    6. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    7. Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
    8. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    9. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    10. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    11. Tartakovsky, Alexandre M. & Ma, Tong & Barajas-Solano, David A. & Tipireddy, Ramakrishna, 2023. "Physics-informed Gaussian process regression for states estimation and forecasting in power grids," International Journal of Forecasting, Elsevier, vol. 39(2), pages 967-980.
    12. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
    13. Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
    14. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    15. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    16. Santiago Moreno-Carbonell & Eugenio F. Sánchez-Úbeda & Antonio Muñoz, 2020. "Time Series Decomposition of the Daily Outdoor Air Temperature in Europe for Long-Term Energy Forecasting in the Context of Climate Change," Energies, MDPI, vol. 13(7), pages 1-28, March.
    17. Bessec, Marie & Fouquau, Julien, 2018. "Short-run electricity load forecasting with combinations of stationary wavelet transforms," European Journal of Operational Research, Elsevier, vol. 264(1), pages 149-164.
    18. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    19. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    20. Xie, Jingrui & Hong, Tao, 2016. "GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1012-1016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1510-:d:224789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.