IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1264-d219212.html
   My bibliography  Save this article

Heat Transfer in Latent High-Temperature Thermal Energy Storage Systems—Experimental Investigation

Author

Listed:
  • Georg Scharinger-Urschitz

    (Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria)

  • Heimo Walter

    (Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria)

  • Markus Haider

    (Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria)

Abstract

Thermal energy storage systems with phase-change materials promise a high energy density for applications where heat is to be stored in a narrow temperature range. The advantage of higher capacities comes along with some challenges in terms of behavior prediction. The heat transfer into such a storage is highly transient and depends on the phase state, which is either liquid or solid in the present investigation. The aim is to quantify the heat transfer into the storage and to compare two different fin geometries. The novel geometry is supposed to accelerate the melting process. For this purpose, a single tube test rig was designed, built, and equipped with aluminum fins. The phase-change material temperature as well as the heat-transfer fluid temperature at the inlet and outlet were measured for charging and discharging cycles. Sodium nitrate is used as phase-change material, and the storage is operated ±30 ∘ C around the melting point of sodium nitrate, which is 306 ∘ C . An enthalpy function for sodium nitrate is proposed and the methodology for determining the apparent heat-transfer rate is provided. The phase-change material temperature trends are shown and analyzed; different melting in radial and axial directions and in the individual geometry sections occurs. With the enthalpy function for sodium nitrate, the energy balance is determined over the melting range. Values for the apparent heat-transfer coefficient are derived, which allow capacity and power estimations for industrial-scale latent heat thermal energy systems.

Suggested Citation

  • Georg Scharinger-Urschitz & Heimo Walter & Markus Haider, 2019. "Heat Transfer in Latent High-Temperature Thermal Energy Storage Systems—Experimental Investigation," Energies, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1264-:d:219212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Kuboth & Andreas König-Haagen & Dieter Brüggemann, 2017. "Numerical Analysis of Shell-and-Tube Type Latent Thermal Energy Storage Performance with Different Arrangements of Circular Fins," Energies, MDPI, vol. 10(3), pages 1-14, February.
    2. Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
    3. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    4. Tay, N.H.S. & Bruno, F. & Belusko, M., 2013. "Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD," Applied Energy, Elsevier, vol. 104(C), pages 79-86.
    5. Alam, Tanvir E. & Dhau, Jaspreet S. & Goswami, D. Yogi & Stefanakos, Elias, 2015. "Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems," Applied Energy, Elsevier, vol. 154(C), pages 92-101.
    6. José Miguel Maldonado & Margalida Fullana-Puig & Marc Martín & Aran Solé & Ángel G. Fernández & Alvaro De Gracia & Luisa F. Cabeza, 2018. "Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C," Energies, MDPI, vol. 11(4), pages 1-13, April.
    7. Martin, Viktoria & He, Bo & Setterwall, Fredrik, 2010. "Direct contact PCM-water cold storage," Applied Energy, Elsevier, vol. 87(8), pages 2652-2659, August.
    8. Laing, Doerte & Bauer, Thomas & Breidenbach, Nils & Hachmann, Bernd & Johnson, Maike, 2013. "Development of high temperature phase-change-material storages," Applied Energy, Elsevier, vol. 109(C), pages 497-504.
    9. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    10. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    11. Songgang Qiu & Laura Solomon & Garrett Rinker, 2017. "Development of an Integrated Thermal Energy Storage and Free-Piston Stirling Generator for a Concentrating Solar Power System," Energies, MDPI, vol. 10(9), pages 1-17, September.
    12. Zipf, Verena & Neuhäuser, Anton & Willert, Daniel & Nitz, Peter & Gschwander, Stefan & Platzer, Werner, 2013. "High temperature latent heat storage with a screw heat exchanger: Design of prototype," Applied Energy, Elsevier, vol. 109(C), pages 462-469.
    13. Songgang Qiu & Laura Solomon & Ming Fang, 2018. "Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material," Energies, MDPI, vol. 11(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    2. Tay, N.H.S. & Belusko, M. & Liu, M. & Bruno, F., 2015. "Investigation of the effect of dynamic melting in a tube-in-tank PCM system using a CFD model," Applied Energy, Elsevier, vol. 137(C), pages 738-747.
    3. Pointner, Harald & Steinmann, Wolf-Dieter, 2016. "Experimental demonstration of an active latent heat storage concept," Applied Energy, Elsevier, vol. 168(C), pages 661-671.
    4. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    5. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
    6. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).
    8. Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.
    9. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Goswami, D. Yogi & Stefanakos, Elias, 2018. "Influence of design on performance of a latent heat storage system at high temperatures," Applied Energy, Elsevier, vol. 224(C), pages 220-229.
    10. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    12. Yuqing Tang & Neng Zhu & Siqi Li & Yingzhen Hou, 2023. "Experimental and Numerical Optimization Study on Performance of Phase-Change Thermal Energy Storage System," Energies, MDPI, vol. 16(10), pages 1-39, May.
    13. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    14. Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
    15. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
    16. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    17. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    18. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    19. Sebastian Ammann & Andreas Ammann & Rebecca Ravotti & Ludger J. Fischer & Anastasia Stamatiou & Jörg Worlitschek, 2018. "Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System," Energies, MDPI, vol. 11(9), pages 1-15, August.
    20. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1264-:d:219212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.