IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i8p2652-2659.html
   My bibliography  Save this article

Direct contact PCM-water cold storage

Author

Listed:
  • Martin, Viktoria
  • He, Bo
  • Setterwall, Fredrik

Abstract

Comfort cooling demand continues to increase throughout the world. Conventional cooling production results in high demand for electrical power during peak hours, leading to high emissions for producing cooling, and potential power shortages in electric grids. With a cold storage, the peak power demand is effectively managed and enables free-cooling. This paper examines one concept using phase change materials (PCM) for storing of cold, where the cold carrier (water) is in direct contact with the PCM. This is in order to enable high power for charging and discharging while providing a high storage capacity. A theoretical model highlights important design parameters for reaching large storage and power capacity. The capacity increases with the Packing Factor and temperature difference across the storage. For high power, the flow rate, temperature difference, and drop size is important parameters which is also verified in an experimental evaluation. The obtainable power is between 30 and 80Â kW/m3 storage. Practical limitations of this concept are shown to be PCM-water bed expansion and non-uniform channeling due to asymmetric and unstable PCM shells.

Suggested Citation

  • Martin, Viktoria & He, Bo & Setterwall, Fredrik, 2010. "Direct contact PCM-water cold storage," Applied Energy, Elsevier, vol. 87(8), pages 2652-2659, August.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2652-2659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00007-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiatsiriroat, T. & Tiansuwan, J. & Suparos, T. & Na Thalang, K., 2000. "Performance analysis of a direct-contact thermal energy storage-solidification," Renewable Energy, Elsevier, vol. 20(2), pages 195-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Yuqing Tang & Neng Zhu & Siqi Li & Yingzhen Hou, 2023. "Experimental and Numerical Optimization Study on Performance of Phase-Change Thermal Energy Storage System," Energies, MDPI, vol. 16(10), pages 1-39, May.
    3. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    4. Das, Biplab & Mondol, Jayanta Deb & Negi, Sushant & Smyth, Mervyn & Pugsley, Adrian, 2021. "Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector," Renewable Energy, Elsevier, vol. 164(C), pages 990-1004.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2652-2659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.