IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1179-d217364.html
   My bibliography  Save this article

Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion

Author

Listed:
  • Camilo Wilches

    (bwe Energiesysteme GmbH Co. KG, Zeppelinring 12-16, 26127 Friesoythe, Germany)

  • Maik Vaske

    (bwe Energiesysteme GmbH Co. KG, Zeppelinring 12-16, 26127 Friesoythe, Germany)

  • Kilian Hartmann

    (Department of Engineering Science, University of Applied Sciences Aschaffenburg, Würzburger Str. 45, D-63743 Aschaffenburg, Germany)

  • Michael Nelles

    (Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, D-18059 Rostock, Germany)

Abstract

This paper describes an automatic sampling system for anaerobic reactors that allows taking representative samples following the guidelines of Gy’s (1998) theory of sampling. Due to the high heterogeneity degree in a digester the sampling errors are larger than the analysis error, making representative sampling a prerequisite for successful process control. In our system, samples are automatically processed, generating a higher density of data and avoiding human error by sample manipulation. The combination of a representative sampling system with a commercial automate titration unit generates a robust online monitoring system for biogas plants. The system was successfully implemented in an operating biogas plant to control a feeding-on-demand biogas system.

Suggested Citation

  • Camilo Wilches & Maik Vaske & Kilian Hartmann & Michael Nelles, 2019. "Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion," Energies, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1179-:d:217364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madsen, Michael & Holm-Nielsen, Jens Bo & Esbensen, Kim H., 2011. "Monitoring of anaerobic digestion processes: A review perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3141-3155, August.
    2. Andreas Lemmer & Hans-Joachim Naegele & Jana Sondermann, 2013. "How Efficient are Agitators in Biogas Digesters? Determination of the Efficiency of Submersible Motor Mixers and Incline Agitators by Measuring Nutrient Distribution in Full-Scale Agricultural Biogas ," Energies, MDPI, vol. 6(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Hu & Haiyuan Ma & Jiang Wu & Takuro Kobayashi & Kai-Qin Xu, 2022. "Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste," Energies, MDPI, vol. 15(23), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    2. Gao, Mingxue & Wang, Danmeng & Wang, Hui & Wang, Xiaojiao & Feng, Yongzhong, 2019. "Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 191-200.
    3. Meky, Naira & Elreedy, Ahmed & Ibrahim, Mona G. & Fujii, Manabu & Tawfik, Ahmed, 2021. "Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents," Energy, Elsevier, vol. 217(C).
    4. Chen, Yuling & Rößler, Benjamin & Zielonka, Simon & Lemmer, Andreas & Wonneberger, Anna-Maria & Jungbluth, Thomas, 2014. "The pressure effects on two-phase anaerobic digestion," Applied Energy, Elsevier, vol. 116(C), pages 409-415.
    5. Seongwon Im & Mo-Kwon Lee & Alsayed Mostafa & Om Prakash & Kyeong-Ho Lim & Dong-Hoon Kim, 2021. "Effect of Localized Temperature Difference on Hydrogen Fermentation," Energies, MDPI, vol. 14(21), pages 1-11, October.
    6. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    7. Gaida, Daniel & Wolf, Christian & Bongards, Michael, 2017. "Feed control of anaerobic digestion processes for renewable energy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 869-875.
    8. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    9. Grigorios Rekleitis & Katherine-Joanne Haralambous & Maria Loizidou & Konstantinos Aravossis, 2020. "Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy," Energies, MDPI, vol. 13(17), pages 1-14, August.
    10. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    11. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    12. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    13. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    14. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    15. Gunes, Burcu & Stokes, Joseph & Davis, Paul & Connolly, Cathal & Lawler, Jenny, 2019. "Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Lamb, Jacob J. & Bernard, Olivier & Sarker, Shiplu & Lien, Kristian M. & Hjelme, Dag Roar, 2019. "Perspectives of optical colourimetric sensors for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 87-96.
    17. Jia, Tongtong & Wang, Zaizhao & Shan, Haiqiang & Liu, Yuanfeng & Gong, Lei, 2017. "Effect of nanoscale zero-valent iron on sludge anaerobic digestion," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 190-195.
    18. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    19. Schneider, Nico & Gerber, Mandy, 2020. "Rheological properties of digestate from agricultural biogas plants: An overview of measurement techniques and influencing factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1179-:d:217364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.