IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1160-d217088.html
   My bibliography  Save this article

A Power Exchange Strategy for Multiple Areas with Hydro Power and Flexible Loads

Author

Listed:
  • Jichun Liu

    (Department of Electrical Engineering, College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Yangfang Yang

    (Department of Electrical Engineering, College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Yue Xiang

    (Department of Electrical Engineering, College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Junyong Liu

    (Department of Electrical Engineering, College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

Abstract

Areas with hydro power may purchase extra power from the outside power market during dry seasons, which will cause a deviation between the actual and expected power purchase amount due to the inaccurate judgment of the market situation. Because of the uncertainty of price fluctuations, the risk of purchasing power in the real-time market to eliminate this deviation is very high. This paper proposes an innovative trade mode, where the power exchange strategy between multiple areas is adopted through forming an alliance, i.e., one area can use the controllable elements within others, and constructing a monthly and post day-ahead two phase optimization model. The objective function of the monthly stochastic robust optimization considers the power purchase cost to determine the controllable elements dispatch dates for every area in the alliance. Thus, areas can make reasonable dispatch schedules for controllable elements to avoid the resource waste that means more controllable elements are prepared before post day-ahead optimization but less are used after post day-ahead optimization. While the post day-ahead optimization model determines the internal controllable elements dispatch and power exchange amount after the day-ahead market clearing process, users’ satisfaction and dispatch schedule changes for energy storage device are also considered. In order to solve the proposed two phase model, the dual principle and linearization methods are used to convert them into mixed-integer linear programming problems that can be effectively solved by the Cplex solver. The study case verifies the power deviation cost decreases with the power exchange strategy and the important role of energy storage devices.

Suggested Citation

  • Jichun Liu & Yangfang Yang & Yue Xiang & Junyong Liu, 2019. "A Power Exchange Strategy for Multiple Areas with Hydro Power and Flexible Loads," Energies, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1160-:d:217088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    2. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    3. Hosseini, S. M. H. & Forouzbakhsh, F. & Rahimpoor, M., 2005. "Determination of the optimal installation capacity of small hydro-power plants through the use of technical, economic and reliability indices," Energy Policy, Elsevier, vol. 33(15), pages 1948-1956, October.
    4. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Robust bidding and offering strategies of electricity retailer under multi-tariff pricing," Energy Economics, Elsevier, vol. 68(C), pages 359-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    2. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    3. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    4. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    5. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    6. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    7. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    8. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
    9. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    10. Salas-Molina, Francisco & Martin, Francisco J. & Rodríguez-Aguilar, Juan A. & Serrà, Joan & Arcos, Josep Ll., 2017. "Empowering cash managers to achieve cost savings by improving predictive accuracy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 403-415.
    11. Ama Agyeiwaa Abrokwah, 2018. "Price and Volatility Spillovers in the Electricity Reliability Council of Texas Day-Ahead Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 322-330.
    12. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    13. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    14. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    15. Weron, Rafal, 2009. "Forecasting wholesale electricity prices: A review of time series models," MPRA Paper 21299, University Library of Munich, Germany.
    16. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    17. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    18. Alexander Ryota Keeley, Kenichi Matsumoto, Kenta Tanaka, Yogi Sugiawan, and Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    19. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    20. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1160-:d:217088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.