IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p806-d209829.html
   My bibliography  Save this article

Experimental and Numerical Investigations on the Fluidized Heat Absorption inside Quartz Glass and Metal Tubes

Author

Listed:
  • Shengchun Zhang

    (Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China
    Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China
    University of Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China
    Beijing Engineering Research Center of Solar Thermal Power, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China)

  • Zhifeng Wang

    (Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China
    Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China
    University of Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China
    Beijing Engineering Research Center of Solar Thermal Power, No.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China)

Abstract

Air as a heat transfer fluid has been widely studied in concentrated solar-power generations, but the solar energy absorbed by air inside transparent and opaque tubes has not been comparatively investigated. The heat transfer was studied experimentally and numerically for a fluidized granular bed air receiver with a non-uniform energy flux and the fluidization occurs inside cylindrical metal and quartz glass tubes. The experiments were conducted in a solar simulator with 19 xenon short-arc lamps and showed that the thermal efficiencies in the quartz tube are higher than those in the metal tube. A numerical model was established to study the fluidized heat transport inside the quartz tube, which includes effective thermal conductivities for the conduction, the Syamlal–O’Brien drag model to describe the pressure drop, a modified P-1 model for the radiation, and a two-fluid model (TFM) for gas–solid two-phase flow. The local thermal non-equilibrium model is used to relate the air temperatures to particle temperatures. Comparisons with experimental data show that this model can be used to predict the heat transport inside the quartz glass tube. The maximum relative error was 7.7% when the current is 100 A and the air mass flow rate is 0.53 g/s.

Suggested Citation

  • Shengchun Zhang & Zhifeng Wang, 2019. "Experimental and Numerical Investigations on the Fluidized Heat Absorption inside Quartz Glass and Metal Tubes," Energies, MDPI, vol. 12(5), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:806-:d:209829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaowu Yin & Feiyang Xue & Xu Wang & Lige Tong & Li Wang & Yulong Ding, 2020. "Heat Transfer Characteristics of High-Temperature Dusty Flue Gas from Industrial Furnaces in a Granular Bed with Buried Tubes," Energies, MDPI, vol. 13(14), pages 1-12, July.
    2. Korba, David & Huang, Wei & Randhir, Kelvin & Petrasch, Joerg & Klausner, James & AuYeung, Nick & Li, Like, 2022. "A continuum model for heat and mass transfer in moving-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    2. Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
    3. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    4. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    5. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    6. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    7. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    9. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Jayaraman, K. & Paramasivan, Lavinsaa & Kiumarsi, Shaian, 2017. "Reasons for low penetration on the purchase of photovoltaic (PV) panel system among Malaysian landed property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 562-571.
    11. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    12. Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
    13. Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
    14. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    15. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    16. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    17. Xiangjun Yu & Wenlei Lian & Ke Gao & Zhixing Jiang & Cheng Tian & Nan Sun & Hangbin Zheng & Xinrui Wang & Chao Song & Xianglei Liu, 2022. "Solar Thermochemical CO 2 Splitting Integrated with Supercritical CO 2 Cycle for Efficient Fuel and Power Generation," Energies, MDPI, vol. 15(19), pages 1-20, October.
    18. Lim, Jin Han & Chinnici, Alfonso & Dally, Bassam B. & Nathan, Graham J., 2016. "Assessment of the potential benefits and constraints of a hybrid solar receiver and combustor operated in the MILD combustion regime," Energy, Elsevier, vol. 116(P1), pages 735-745.
    19. Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Chang, Chun & Liu, Hong, 2013. "Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver," Renewable Energy, Elsevier, vol. 50(C), pages 214-221.
    20. Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:806-:d:209829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.