IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p648-d206720.html
   My bibliography  Save this article

Thermo-Electric Energy Storage with Solar Heat Integration: Exergy and Exergo-Economic Analysis

Author

Listed:
  • Daniele Fiaschi

    (Department of Industrial Engineering, Università degli Studi di Firenze, Florence, Italy)

  • Giampaolo Manfrida

    (Department of Industrial Engineering, Università degli Studi di Firenze, Florence, Italy)

  • Karolina Petela

    (Institute of Thermal Technology, Silesian University of Technology, Gliwice, Poland)

  • Lorenzo Talluri

    (Department of Industrial Engineering, Università degli Studi di Firenze, Florence, Italy)

Abstract

A Thermo-Electric Energy Storage (TEES) system is proposed to provide peak-load support (1–2 daily hours of operation) for distributed users using small/medium-size photovoltaic systems (4 to 50 kWe). The purpose is to complement the PV with a reliable storage system that cancompensate the produc tivity/load mismatch, aiming at off-grid operation. The proposed TEES applies sensible heat storage, using insulated warm-water reservoirs at 120/160 °C, and cold storage at −10/−20 °C (water and ethylene glycol). The power cycle is a trans-critical CO 2 unit including recuperation; in the storage mode, a supercritical heat pump restores heat to the hot reservoir, while a cooling cycle cools the cold reservoir; both the heat pump and cooling cycle operate on photovoltaic (PV) energy, and benefit from solar heat integration at low–medium temperatures (80–120 °C). This allows the achievement of a marginal round-trip efficiency (electric-to-electric) in the range of 50% (not considering solar heat integration).The TEES system is analysed with different resource conditions and parameters settings (hot storage temperature, pressure levels for all cycles, ambient temperature, etc.), making reference to standard days of each month of the year; exergy and exergo-economic analyses are performed to identify the critical items in the complete system and the cost of stored electricity.

Suggested Citation

  • Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Lorenzo Talluri, 2019. "Thermo-Electric Energy Storage with Solar Heat Integration: Exergy and Exergo-Economic Analysis," Energies, MDPI, vol. 12(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:648-:d:206720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henchoz, Samuel & Buchter, Florian & Favrat, Daniel & Morandin, Matteo & Mercangöz, Mehmet, 2012. "Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles," Energy, Elsevier, vol. 45(1), pages 358-365.
    2. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    3. Morandin, Matteo & Mercangöz, Mehmet & Hemrle, Jaroslav & Maréchal, François & Favrat, Daniel, 2013. "Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles," Energy, Elsevier, vol. 58(C), pages 571-587.
    4. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: Alternative system configurations," Energy, Elsevier, vol. 45(1), pages 386-396.
    5. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    6. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    7. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
    8. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    9. Mercangöz, Mehmet & Hemrle, Jaroslav & Kaufmann, Lilian & Z’Graggen, Andreas & Ohler, Christian, 2012. "Electrothermal energy storage with transcritical CO2 cycles," Energy, Elsevier, vol. 45(1), pages 407-415.
    10. McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
    11. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moein Shamoushaki & Pouriya H. Niknam & Lorenzo Talluri & Giampaolo Manfrida & Daniele Fiaschi, 2021. "Development of Cost Correlations for the Economic Assessment of Power Plant Equipment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    2. Andrea Lazzaretto & Andrea Toffolo, 2019. "Optimum Choice of Energy System Configuration and Storages for a Proper Match between Energy Conversion and Demands," Energies, MDPI, vol. 12(20), pages 1-6, October.
    3. Guo, Hao & Gong, Maoqiong & Sun, Hailiang, 2021. "Performance analysis of a novel energy storage system based on the combination of positive and reverse organic Rankine cycles," Energy, Elsevier, vol. 231(C).
    4. Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Federico Rossi & Adalgisa Sinicropi & Lorenzo Talluri, 2020. "Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage," Energies, MDPI, vol. 13(13), pages 1-21, July.
    5. Pierpaolo Garavaso & Fabio Bignucolo & Jacopo Vivian & Giulia Alessio & Michele De Carli, 2021. "Optimal Planning and Operation of a Residential Energy Community under Shared Electricity Incentives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    6. Vitantonio Colucci & Giampaolo Manfrida & Barbara Mendecka & Lorenzo Talluri & Claudio Zuffi, 2021. "LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant," Sustainability, MDPI, vol. 13(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Federico Rossi & Adalgisa Sinicropi & Lorenzo Talluri, 2020. "Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage," Energies, MDPI, vol. 13(13), pages 1-21, July.
    2. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    3. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    4. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Baik, Young-Jin & Heo, Jaehyeok & Koo, Junemo & Kim, Minsung, 2014. "The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle," Energy, Elsevier, vol. 75(C), pages 204-215.
    6. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    7. Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system," Energy, Elsevier, vol. 113(C), pages 693-701.
    8. Peng Hu & Gao-Wei Zhang & Long-Xiang Chen & Ming-Hou Liu, 2017. "Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems," Energies, MDPI, vol. 10(2), pages 1-15, February.
    9. Steinmann, Wolf-Dieter, 2017. "Thermo-mechanical concepts for bulk energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 205-219.
    10. Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
    11. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
    12. Jockenhöfer, Henning & Steinmann, Wolf-Dieter & Bauer, Dan, 2018. "Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration," Energy, Elsevier, vol. 145(C), pages 665-676.
    13. Kim, Young-Min & Shin, Dong-Gil & Lee, Sun-Youp & Favrat, Daniel, 2013. "Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage," Energy, Elsevier, vol. 49(C), pages 484-501.
    14. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
    15. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Parametric optimisation and thermo-economic analysis of Joule–Brayton cycle-based pumped thermal electricity storage system under various charging–discharging periods," Energy, Elsevier, vol. 263(PE).
    16. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
    17. Kum-Jung Lee & Seok-Ho Seo & Junhyun Cho & Si-Doek Oh & Sang-Ok Choi & Ho-Young Kwak, 2022. "Exergy and Thermoeconomic Analyses of a Carnot Battery System Comprising an Air Heat Pump and Steam Turbine," Energies, MDPI, vol. 15(22), pages 1-19, November.
    18. Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Ling, Haoshu & Zhang, Shuang & Chen, Haisheng, 2023. "Thermodynamic analysis and optimization of pumped thermal–liquid air energy storage (PTLAES)," Applied Energy, Elsevier, vol. 332(C).
    19. Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems," Energy, Elsevier, vol. 106(C), pages 260-269.
    20. Zhang, Yanchao & Xie, Zhenzhen, 2022. "Thermodynamic efficiency and bounds of pumped thermal electricity storage under whole process ecological optimization," Renewable Energy, Elsevier, vol. 188(C), pages 711-720.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:648-:d:206720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.