IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p593-d205489.html
   My bibliography  Save this article

Exploring the Causes of Power-Converter Failure in Wind Turbines based on Comprehensive Field-Data and Damage Analysis

Author

Listed:
  • Katharina Fischer

    (Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES), 30159 Hannover, Germany)

  • Karoline Pelka

    (Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES), 30159 Hannover, Germany)

  • Sebastian Puls

    (Fraunhofer Institute for Silicon Technology (Fraunhofer ISIT), 25524 Itzehoe, Germany)

  • Max-Hermann Poech

    (Fraunhofer Institute for Silicon Technology (Fraunhofer ISIT), 25524 Itzehoe, Germany)

  • Axel Mertens

    (Institute for Drive Systems and Power Electronics IAL, Leibniz University Hannover, 30167 Hannover, Germany)

  • Arne Bartschat

    (Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES), 30159 Hannover, Germany)

  • Bernd Tegtmeier

    (Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES), 30159 Hannover, Germany)

  • Christian Broer

    (Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES), 30159 Hannover, Germany)

  • Jan Wenske

    (Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES), 30159 Hannover, Germany)

Abstract

Power converters are among the most frequently failing components of wind turbines. Despite their massive economic impact, the actual causes and mechanisms underlying these failures have remained in the dark for many years. In view of this situation, a large consortium of three research institutes and 16 companies, including wind-turbine and component manufacturers, operators and maintenance-service providers has joined forces to identify the main causes and driving factors of the power-converter failures in wind turbines to create a basis for effective remedial measures. The present paper summarizes and discusses the results of this research initiative, which have been achieved through the evaluation of converter-specific failure and operating data of a large and diverse worldwide wind-turbine fleet, field measurements as well as post-mortem investigation of returned converter components. A key conclusion of the work is that the thermal-cycling induced fatigue of bond-chip contacts and die-attach solder, which is a known issue in other fields of power-electronics applications and which has been widely assumed to be the principle damage mechanisms also in wind turbines, is no relevant contributor to the observed converter failures in this application. Instead, the results indicate that environmental factors such as humidity and contamination but also design and quality issues as well as human errors play an important part in the incidence of these failures.

Suggested Citation

  • Katharina Fischer & Karoline Pelka & Sebastian Puls & Max-Hermann Poech & Axel Mertens & Arne Bartschat & Bernd Tegtmeier & Christian Broer & Jan Wenske, 2019. "Exploring the Causes of Power-Converter Failure in Wind Turbines based on Comprehensive Field-Data and Damage Analysis," Energies, MDPI, vol. 12(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:593-:d:205489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Faisal Wani & Udai Shipurkar & Jianning Dong & Henk Polinder, 2021. "Thermal Cycling in Converter IGBT Modules with Different Cooling Systems in Pitch- and Active Stall-Controlled Tidal Turbines," Energies, MDPI, vol. 14(20), pages 1-25, October.
    3. Katharina Fischer & Michael Steffes & Karoline Pelka & Bernd Tegtmeier & Martin Dörenkämper, 2021. "Humidity in Power Converters of Wind Turbines—Field Conditions and Their Relation with Failures," Energies, MDPI, vol. 14(7), pages 1-27, March.
    4. Faisal Wani & Udai Shipurkar & Jianning Dong & Henk Polinder & Antonio Jarquin-Laguna & Kaswar Mostafa & George Lavidas, 2020. "Lifetime Analysis of IGBT Power Modules in Passively Cooled Tidal Turbine Converters," Energies, MDPI, vol. 13(8), pages 1-22, April.
    5. Pawel Szczesniak, 2019. "Challenges and Design Requirements for Industrial Applications of AC/AC Power Converters without DC-Link," Energies, MDPI, vol. 12(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Bofeng Xu & Yue Yuan & Haoming Liu & Peng Jiang & Ziqi Gao & Xiang Shen & Xin Cai, 2020. "A Pitch Angle Controller Based on Novel Fuzzy-PI Control for Wind Turbine Load Reduction," Energies, MDPI, vol. 13(22), pages 1-16, November.
    3. Katharina Fischer & Michael Steffes & Karoline Pelka & Bernd Tegtmeier & Martin Dörenkämper, 2021. "Humidity in Power Converters of Wind Turbines—Field Conditions and Their Relation with Failures," Energies, MDPI, vol. 14(7), pages 1-27, March.
    4. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    5. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
    7. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    8. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    9. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    11. Sun, Wei & Lin, Wei-Cheng & You, Fei & Shu, Chi-Min & Qin, Sheng-Hui, 2019. "Prevention of green energy loss: Estimation of fire hazard potential in wind turbines," Renewable Energy, Elsevier, vol. 140(C), pages 62-69.
    12. Sahin, Mustafa & Yavrucuk, Ilkay, 2022. "Adaptive envelope protection control of wind turbines under varying operational conditions," Energy, Elsevier, vol. 247(C).
    13. Wang, Feng & Chen, Jincheng & Xu, Bing & Stelson, Kim A., 2019. "Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    15. Chen, Bin & Xie, Lei & Li, Yongzhan & Gao, Baocheng, 2020. "Acoustical damage detection of wind turbine yaw system using Bayesian network," Renewable Energy, Elsevier, vol. 160(C), pages 1364-1372.
    16. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
    18. Lam, Long T. & Branstetter, Lee & Azevedo, Inês M.L., 2017. "China's wind industry: Leading in deployment, lagging in innovation," Energy Policy, Elsevier, vol. 106(C), pages 588-599.
    19. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    20. Andrius Kulsinskas & Petar Durdevic & Daniel Ortiz-Arroyo, 2021. "Internal Wind Turbine Blade Inspections Using UAVs: Analysis and Design Issues," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:593-:d:205489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.