IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p500-d203560.html
   My bibliography  Save this article

A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes

Author

Listed:
  • David Vera

    (Department of Electrical Engineering, Escuela Politécnica Superior, University of Jaén, 23700 Linares, Spain)

  • Francisco Jurado

    (Department of Electrical Engineering, Escuela Politécnica Superior, University of Jaén, 23700 Linares, Spain)

  • Bárbara de Mena

    (Department of Electrical Engineering, Escuela Politécnica Superior, University of Jaén, 23700 Linares, Spain)

  • Jesús C. Hernández

    (Department of Electrical Engineering, Escuela Politécnica Superior, University of Jaén, 23700 Linares, Spain)

Abstract

This paper presents the theoretical model and the simulation of a cutting edge hybrid power system composed of an externally-fired gas turbine (EFGT) coupled with an organic Rankine cycle (ORC) as a bottoming unit for the maximization of electrical power. The power plant is fed with different biomass sources from olive industry wastes (pruning, dry pomace, stones, leaves and twigs), providing more than 550 kW of electric power and a net electrical efficiency of 26.0%. These wastes were burnt directly at atmospheric pressure in an EFGT, producing 400 kW of electric power and exhaust gases at 300 °C. Ten suitable ORC working fluids have been studied to maximize the electric power generation: cyclohexane, isohexane, pentane, isopentane, neopentane, R113, R245fa, R365mfc, R1233zd and methanol. The best fluid was R1233zd, reaching 152.4 kW and 22.1% of ORC thermal efficiency; as drawback, however, R1233zd was not suitable for Combined Heat and Power CHP applications due its lower condensation temperature. Thus, despite R113 gave minor electricity production (137.5 kW) this allowed to generate additional thermal power (506.8 kW) in the way of hot water at 45 °C.

Suggested Citation

  • David Vera & Francisco Jurado & Bárbara de Mena & Jesús C. Hernández, 2019. "A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes," Energies, MDPI, vol. 12(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:500-:d:203560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.
    2. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    3. Cocco, Daniele & Deiana, Paolo & Cau, Giorgio, 2006. "Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers," Energy, Elsevier, vol. 31(10), pages 1459-1471.
    4. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    5. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & González, Manuel & Mota-Babiloni, Adrián, 2015. "Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources," Energy, Elsevier, vol. 82(C), pages 269-276.
    6. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    7. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    8. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. Al-attab, K.A. & Zainal, Z.A., 2010. "Turbine startup methods for externally fired micro gas turbine (EFMGT) system using biomass fuels," Applied Energy, Elsevier, vol. 87(4), pages 1336-1341, April.
    11. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
    12. Vera, D. & Jurado, F. & de Mena, B. & Schories, G., 2011. "Comparison between externally fired gas turbine and gasifier-gas turbine system for the olive oil industry," Energy, Elsevier, vol. 36(12), pages 6720-6730.
    13. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2017. "Biomass in the generation of electricity in Portugal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 373-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.
    2. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).
    3. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    4. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    5. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    6. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    7. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    8. Di Gregorio, F. & Zaccariello, Lucio, 2012. "Fluidized bed gasification of a packaging derived fuel: energetic, environmental and economic performances comparison for waste-to-energy plants," Energy, Elsevier, vol. 42(1), pages 331-341.
    9. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    10. Kang, Seok Hun, 2016. "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," Energy, Elsevier, vol. 96(C), pages 142-154.
    11. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    12. Saeed Soltani & Hassan Athari & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
    13. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    14. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    15. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.
    16. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    17. Seljak, Tine & Rodman Oprešnik, Samuel & Katrašnik, Tomaž, 2014. "Microturbine combustion and emission characterisation of waste polymer-derived fuels," Energy, Elsevier, vol. 77(C), pages 226-234.
    18. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    19. Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
    20. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:500-:d:203560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.