IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4214-d283848.html
   My bibliography  Save this article

Environmental Impact Evaluation of Distributed Renewable Energy System Based on Life Cycle Assessment and Fuzzy Rough Sets

Author

Listed:
  • Chengzhou Li

    (National Research Center for Thermal Power Engineering and Technology, North China Electric Power University, Beinong Road 2, Beijing 102206, China)

  • Ningling Wang

    (National Research Center for Thermal Power Engineering and Technology, North China Electric Power University, Beinong Road 2, Beijing 102206, China)

  • Hongyuan Zhang

    (Beijing Jingneng Power Co., Ltd, Chenjialin Road 9, Beijing 100025, China)

  • Qingxin Liu

    (National Research Center for Thermal Power Engineering and Technology, North China Electric Power University, Beinong Road 2, Beijing 102206, China)

  • Youguo Chai

    (Beijing InBasis Technology Co., Ltd, Chenjialin Road 9, Beijing 100025, China)

  • Xiaohu Shen

    (National Research Center for Thermal Power Engineering and Technology, North China Electric Power University, Beinong Road 2, Beijing 102206, China)

  • Zhiping Yang

    (National Research Center for Thermal Power Engineering and Technology, North China Electric Power University, Beinong Road 2, Beijing 102206, China)

  • Yongping Yang

    (National Research Center for Thermal Power Engineering and Technology, North China Electric Power University, Beinong Road 2, Beijing 102206, China)

Abstract

The distributed renewable energy system, integrating various renewable energy resources, is a significant energy supply technology within energy internet. It is an effective way to meet increasingly growing demand for energy conservation and environmental damage reduction in energy generation and energy utilization. In this paper, the life cycle assessment (LCA) method and fuzzy rough sets (FRS) theory are combined to build an environmental evaluation model for a distributed renewable energy system. The ReCiPe2016 method is selected to calculate the environmental effect scores of the distributed energy system, and the FRS is utilized to identify the crucial activities and exchanges during its life cycle from cradle to grave. The generalized evaluation method is applied to a real-world case study, a typical distributed energy system located in Yanqing District, Beijing, China, which is composed of wind power, small-scale hydropower, photovoltaic, centralized solar thermal power plant and a biogas power plant. The results show that the environmental effect of per kWh power derived from the distributed renewable energy system is 2.06 × 10 −3 species disappeared per year, 9.88 × 10 −3 disability-adjusted life years, and 1.75 × 10 −3 USD loss on fossil resources extraction, and further in the uncertainty analysis, it is found that the environmental load can be reduced effectively and efficiently by improving life span and annual utilization hour of power generation technologies and technology upgrade for wind turbine and photovoltaic plants. The results show that the proposed evaluation method could fast evaluate the environmental effects of a distributed energy system while the uncertainty analysis with FRS successfully and effectively identifies the key element and link among its life span.

Suggested Citation

  • Chengzhou Li & Ningling Wang & Hongyuan Zhang & Qingxin Liu & Youguo Chai & Xiaohu Shen & Zhiping Yang & Yongping Yang, 2019. "Environmental Impact Evaluation of Distributed Renewable Energy System Based on Life Cycle Assessment and Fuzzy Rough Sets," Energies, MDPI, vol. 12(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4214-:d:283848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miller, Veronica B. & Landis, Amy E. & Schaefer, Laura A., 2011. "A benchmark for life cycle air emissions and life cycle impact assessment of hydrokinetic energy extraction using life cycle assessment," Renewable Energy, Elsevier, vol. 36(3), pages 1040-1046.
    2. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    3. Colmenar-Santos, Antonio & Muñoz-Gómez, Antonio-Miguel & Rosales-Asensio, Enrique & López-Rey, África, 2019. "Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario," Energy, Elsevier, vol. 183(C), pages 61-74.
    4. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "Sensitivity analysis to quantify uncertainty in Life Cycle Assessment: The case study of an Italian tile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4697-4705.
    5. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    6. Portugal Pereira, Joana & Troncoso Parady, Giancarlos & Castro Dominguez, Bernardo, 2014. "Japan's energy conundrum: Post-Fukushima scenarios from a life cycle perspective," Energy Policy, Elsevier, vol. 67(C), pages 104-115.
    7. Petrillo, Antonella & De Felice, Fabio & Jannelli, Elio & Autorino, Claudio & Minutillo, Mariagiovanna & Lavadera, Antonio Lubrano, 2016. "Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system," Renewable Energy, Elsevier, vol. 95(C), pages 337-355.
    8. Portugal-Pereira, Joana & Köberle, Alexandre C. & Soria, Rafael & Lucena, André F.P. & Szklo, Alexandre & Schaeffer, Roberto, 2016. "Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story," Energy, Elsevier, vol. 115(P2), pages 1424-1435.
    9. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    10. Zhang, Di & Evangelisti, Sara & Lettieri, Paola & Papageorgiou, Lazaros G., 2015. "Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment," Energy, Elsevier, vol. 85(C), pages 181-193.
    11. Yanbin Li & Zhen Li, 2019. "Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm," Energies, MDPI, vol. 12(12), pages 1-20, June.
    12. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    13. Vázquez-Rowe, Ian & Reyna, Janet L. & García-Torres, Samy & Kahhat, Ramzy, 2015. "Is climate change-centrism an optimal policy making strategy to set national electricity mixes?," Applied Energy, Elsevier, vol. 159(C), pages 108-116.
    14. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    15. Jesse D. Young & Nathaniel M. Anderson & Helen T. Naughton, 2018. "Influence of Policy, Air Quality, and Local Attitudes toward Renewable Energy on the Adoption of Woody Biomass Heating Systems," Energies, MDPI, vol. 11(11), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    2. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    3. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.
    4. Jurčević, Mišo & Nižetić, Sandro & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan & Giama, Effrosyni & Papadopoulos, Agis, 2022. "Techno-economic and environmental evaluation of photovoltaic-thermal collector design with pork fat as phase change material," Energy, Elsevier, vol. 254(PB).
    5. Tao Zhang & Minli Wang & Peihong Wang & Junyu Liang, 2020. "Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty," Energies, MDPI, vol. 13(14), pages 1-17, July.
    6. Ingela Tietze & Lukas Lazar & Heidi Hottenroth & Steffen Lewerenz, 2020. "LAEND: A Model for Multi-Objective Investment Optimisation of Residential Quarters Considering Costs and Environmental Impacts," Energies, MDPI, vol. 13(3), pages 1-22, February.
    7. Schmeling, Lucas & Schönfeldt, Patrik & Klement, Peter & Vorspel, Lena & Hanke, Benedikt & von Maydell, Karsten & Agert, Carsten, 2022. "A generalised optimal design methodology for distributed energy systems," Renewable Energy, Elsevier, vol. 200(C), pages 1223-1239.
    8. Gary Ampuño & Juan Lata-Garcia & Francisco Jurado, 2020. "Evaluation of Energy Efficiency and the Reduction of Atmospheric Emissions by Generating Electricity from a Solar Thermal Power Generation Plant," Energies, MDPI, vol. 13(3), pages 1-20, February.
    9. Alicja Małgorzata Graczyk & Marta Kusterka-Jefmańska & Bartłomiej Jefmański & Andrzej Graczyk, 2023. "Pro-Ecological Energy Attitudes towards Renewable Energy Investments before the Pandemic and European Energy Crisis: A Segmentation-Based Approach," Energies, MDPI, vol. 16(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    2. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Joana Portugal-Pereira & Alexandre Koberle & André F. P. Lucena & Pedro R. R. Rochedo & Mariana Império & Ana Monteiro Carsalade & Roberto Schaeffer & Peter Rafaj, 2018. "Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil," Climatic Change, Springer, vol. 148(1), pages 293-309, May.
    4. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    6. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Wei Wang & Kehui Wei & Oleksandr Kubatko & Vladyslav Piven & Yulija Chortok & Oleksandr Derykolenko, 2023. "Economic Growth and Sustainable Transition: Investigating Classical and Novel Factors in Developed Countries," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    8. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    9. Jia Li & Yahong Zheng & Bing Liu & Yanyi Chen & Zhihang Zhong & Chenyu Dong & Chaoqun Wang, 2024. "The Synergistic Relationship between Low-Carbon Development of Road Freight Transport and Its Economic Efficiency—A Case Study of Wuhan, China," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    10. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    11. Jacek Jaworski & Leszek Czerwonka, 2021. "Determinants of Enterprises’ Capital Structure in Energy Industry: Evidence from European Union," Energies, MDPI, vol. 14(7), pages 1-21, March.
    12. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    13. Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
    14. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    15. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    16. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    17. Wu, Xiangling & Ding, Shusheng, 2023. "The impact of the Bitcoin price on carbon neutrality: Evidence from futures markets," Finance Research Letters, Elsevier, vol. 56(C).
    18. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    19. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    20. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4214-:d:283848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.