IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3993-d278560.html
   My bibliography  Save this article

Numerical Study of Nacelle Wind Speed Characteristics of a Horizontal Axis Wind Turbine under Time-Varying Flow

Author

Listed:
  • Xiaodong Wang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Yunong Liu

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Luyao Wang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Lin Ding

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China
    China Resources Power Technology Research Institute Co., Ltd., Shenzhen 518026, Guangdong, China)

  • Hui Hu

    (Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

Nacelle wind speed transfer function (NTF) is usually used for power prediction and operational control of a horizontal axis wind turbine. Nacelle wind speed exhibits high instability as it is influenced by both incoming flow and near wake of a wind turbine rotor. Enhanced understanding of the nacelle wind speed characteristics is critical for improving the accuracy of NTF. This paper presents Reynolds-averaged Navier–Stokes (RANS) simulation results obtained for a multi-megawatt wind turbine under both stable and dynamic incoming flows. The dynamic inlet wind speed varies in the form of simplified sinusoidal and superposed sinusoidal functions. The simulation results are analyzed in time and frequency domains. For a stable inlet flow, the variation of nacelle wind speed is mainly influenced by the blade rotation. The influence of wake flow shows high frequency characteristics. The results with stable inlet flow show that the reduction of the nacelle wind speed with respect to the inlet wind speed is overestimated for low wind speed condition, and underestimated for high wind speed condition. Under time-varing inflow conditions, for the time scale and fluctuation amplitude subject to the International Electrotechnical Commission (IEC) standard, the nacelle wind speed is mainly influenced by the dynamic inflow. The variation of inflow can be recovered by choosing a suitable low pass filter. The work in this paper demonstrates the potential for building accurate NTF based on Computational Fluid Dynamic (CFD) simulations and signal analysis.

Suggested Citation

  • Xiaodong Wang & Yunong Liu & Luyao Wang & Lin Ding & Hui Hu, 2019. "Numerical Study of Nacelle Wind Speed Characteristics of a Horizontal Axis Wind Turbine under Time-Varying Flow," Energies, MDPI, vol. 12(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3993-:d:278560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebert, P.R & Wood, D.H, 2001. "The near wake of a model horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(4), pages 461-472.
    2. Lignarolo, Lorenzo E.M. & Mehta, Dhruv & Stevens, Richard J.A.M. & Yilmaz, Ali Emre & van Kuik, Gijs & Andersen, Søren J. & Meneveau, Charles & Ferreira, Carlos J. & Ragni, Daniele & Meyers, Johan & v, 2016. "Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine," Renewable Energy, Elsevier, vol. 94(C), pages 510-523.
    3. Dongheon Shin & Kyungnam Ko, 2019. "Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement," Energies, MDPI, vol. 12(6), pages 1-15, March.
    4. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
    5. Ebert, P.R. & Wood, D.H., 1997. "The near wake of a model horizontal-axis wind turbine—I. Experimental arrangements and initial results," Renewable Energy, Elsevier, vol. 12(3), pages 225-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongmyoung Kim & Taesu Jeon & Insu Paek & Daeyoung Kim, 2022. "A Study on Available Power Estimation Algorithm and Its Validation," Energies, MDPI, vol. 15(7), pages 1-14, April.
    2. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    3. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebert, P.R. & Wood, D.H., 2002. "The near wake of a model horizontal-axis wind turbine at runaway," Renewable Energy, Elsevier, vol. 25(1), pages 41-54.
    2. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Shin, Dongheon & Ko, Kyungnam, 2022. "Experimental study on application of nacelle-mounted LiDAR for analyzing wind turbine wake effects by distance," Energy, Elsevier, vol. 243(C).
    4. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    5. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    7. Mohsen Vahidzadeh & Corey D. Markfort, 2019. "Modified Power Curves for Prediction of Power Output of Wind Farms," Energies, MDPI, vol. 12(9), pages 1-19, May.
    8. Asmuth, Henrik & Navarro Diaz, Gonzalo P. & Madsen, Helge Aagaard & Branlard, Emmanuel & Meyer Forsting, Alexander R. & Nilsson, Karl & Jonkman, Jason & Ivanell, Stefan, 2022. "Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements," Renewable Energy, Elsevier, vol. 191(C), pages 868-887.
    9. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    10. Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
    11. Dai, Xuan & Xu, Da & Zhang, Mengqi & Stevens, Richard J.A.M., 2022. "A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics," Renewable Energy, Elsevier, vol. 191(C), pages 608-624.
    12. Jing Zhang & Jixing Chen & Hao Liu & Yining Chen & Jingwen Yang & Zongtao Yuan & Qingan Li, 2023. "Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project," Energies, MDPI, vol. 16(5), pages 1-16, February.
    13. Hossain, M.Z. & Hirahara, H. & Nonomura, Y. & Kawahashi, M., 2007. "The wake structure in a 2D grid installation of the horizontal axis micro wind turbines," Renewable Energy, Elsevier, vol. 32(13), pages 2247-2267.
    14. Zhao, Shuang & Wang, Jianwen & Han, Yuxia & Liu, Zhen, 2022. "Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation," Energy, Elsevier, vol. 249(C).
    15. Sun, Chong & Tian, Tian & Zhu, Xiaocheng & Hua, Ouyang & Du, Zhaohui, 2021. "Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition," Energy, Elsevier, vol. 227(C).
    16. Lu Ma & Xiaodong Wang & Jian Zhu & Shun Kang, 2019. "Dynamic Stall of a Vertical-Axis Wind Turbine and Its Control Using Plasma Actuation," Energies, MDPI, vol. 12(19), pages 1-18, September.
    17. Ingrid Neunaber & Michael Hölling & Richard J. A. M. Stevens & Gerard Schepers & Joachim Peinke, 2020. "Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map," Energies, MDPI, vol. 13(20), pages 1-20, October.
    18. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    19. Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
    20. Hirahara, Hiroyuki & Hossain, M. Zakir & Kawahashi, Masaaki & Nonomura, Yoshitami, 2005. "Testing basic performance of a very small wind turbine designed for multi-purposes," Renewable Energy, Elsevier, vol. 30(8), pages 1279-1297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3993-:d:278560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.