IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2215-d238780.html
   My bibliography  Save this article

Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm

Author

Listed:
  • M. Rambabu

    (Department of EEE, GMR Institute of Technology Rajam, Rajam, AP 532127, India)

  • G. V. Nagesh Kumar

    (Department of EEE, JNTUA CE Pulivendula, Pulivendula, AP 516390, India)

  • S. Sivanagaraju

    (Department of EEE, JNTUK Kakinada, Kakinada, AP 533001, India)

Abstract

Inrecent electrical power networks a number of failures due to overloading of the transmission lines, stability problems, mismatch in supply and demand, narrow scope for expanding the transmission network and other issues like global warming, environmental conditions, etc. have been noticed. In this paper, a thyristor-controlled series compensator (TCSC) is placed at the optimum position by using two indices for enhancing the power flows as well as the voltage security and power quality of the integrated system. A fusedseverity index is proposed for the optimal positionalong with a grey wolf algorithm-based optimal tuning of the TCSC for reduction of real power losses, fuel cost with valve-point effect, carbon emissions, and voltage deviation in a modern electrical network. The voltage stability index to evaluate the power flow of the line and a novel line stability indexto assessthe line capacityare used. The TCSC is placed at the highest value of the fusedseverity index. In addition, an intermittent severity index (IMSI) is used to find the most severely affected line and is used for relocating the TCSC to a better location under different contingencies.Lognormal and Weibull probability density functions (PDFs)are utilized forassessing the output ofphotovoltaic (PV) and wind power. The proposed methodhas been implemented on the IEEE 57 bus system to validate the methodology, and the results of the integrated system with and without TCSC are comparedunder normal and contingency conditions.

Suggested Citation

  • M. Rambabu & G. V. Nagesh Kumar & S. Sivanagaraju, 2019. "Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm," Energies, MDPI, vol. 12(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2215-:d:238780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    2. Modarresi, Javad & Gholipour, Eskandar & Khodabakhshian, Amin, 2016. "A comprehensive review of the voltage stability indices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 1-12.
    3. B. Venkateswara Rao & G.V. Nagesh Kumar, 2015. "A Comparative Study of BAT and Firefly Algorithms for Optimal Placement and Sizing of Static VAR Compensator for Enhancement of Voltage Stability," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 4(1), pages 68-84, January.
    4. Weisi Deng & Buhan Zhang & Hongfa Ding & Hang Li, 2017. "Risk-Based Probabilistic Voltage Stability Assessment in Uncertain Power System," Energies, MDPI, vol. 10(2), pages 1-19, February.
    5. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    6. Eleonora Riva Sanseverino & Maria Luisa Di Silvestre & Romina Badalamenti & Ninh Quang Nguyen & Josep Maria Guerrero & Lexuan Meng, 2015. "Optimal Power Flow in Islanded Microgrids Using a Simple Distributed Algorithm," Energies, MDPI, vol. 8(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    2. Rambabu Muppidi & Ramakrishna S. S. Nuvvula & S. M. Muyeen & SK. A. Shezan & Md. Fatin Ishraque, 2022. "Optimization of a Fuel Cost and Enrichment of Line Loadability for a Transmission System by Using Rapid Voltage Stability Index and Grey Wolf Algorithm Technique," Sustainability, MDPI, vol. 14(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharmistha Nandi & Sriparna Roy Ghatak & Parimal Acharjee & Fernando Lopes, 2023. "Non-Iterative, Unique, and Logical Formula-Based Technique to Determine Maximum Load Multiplier and Practical Load Multiplier for Both Transmission and Distribution Systems," Energies, MDPI, vol. 16(12), pages 1-19, June.
    2. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    3. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    4. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    5. Bernardos, Eva & López, Ignacio & Rodríguez, Javier & Abánades, Alberto, 2013. "Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles," Energy Policy, Elsevier, vol. 62(C), pages 99-106.
    6. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    7. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    8. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    9. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    10. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    11. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    12. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    13. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    14. Chakrabarti, Mohammed Harun & Mjalli, Farouq Sabri & AlNashef, Inas Muen & Hashim, Mohd. Ali & Hussain, Mohd. Azlan & Bahadori, Laleh & Low, Chee Tong John, 2014. "Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 254-270.
    15. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    16. Ahmad Faiz Minai & Tahsin Usmani & Majed A. Alotaibi & Hasmat Malik & Mohammed E. Nassar, 2022. "Performance Analysis and Comparative Study of a 467.2 kWp Grid-Interactive SPV System: A Case Study," Energies, MDPI, vol. 15(3), pages 1-19, February.
    17. Yoshiaki Matsukawa & Masayuki Watanabe & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman, 2019. "Voltage Stability Index Calculation by Hybrid State Estimation Based on Multi Objective Optimal Phasor Measurement Unit Placement," Energies, MDPI, vol. 12(14), pages 1-19, July.
    18. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    19. Ghouchani, Mahya & Taji, Mohammad & Cheheltani, Atefeh Sadat & Chehr, Mohammad Seifi, 2021. "Developing a perspective on the use of renewable energy in Iran," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    20. Neha Gupta & Mohini Agarwal & Pratibha Garg & Manoj Bansal, 2021. "Revenue optimization modeling for renewable energy resource mix for sustainable development," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(2), pages 108-115, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2215-:d:238780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.