IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2146-d164187.html
   My bibliography  Save this article

Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study

Author

Listed:
  • Nourelhouda Boukaous

    (Laboratoire de Sécurité des Procédés Chimiques LSPC-4704, INSA Rouen, UNIROUEN, Normandie Univ., 76000 Rouen, France
    Faculté de Génie des Procédés Université de Constantine 3, 25000 Constantine, Algeria)

  • Lokmane Abdelouahed

    (Laboratoire de Sécurité des Procédés Chimiques LSPC-4704, INSA Rouen, UNIROUEN, Normandie Univ., 76000 Rouen, France)

  • Mustapha Chikhi

    (Faculté de Génie des Procédés Université de Constantine 3, 25000 Constantine, Algeria)

  • Abdeslam-Hassen Meniai

    (Faculté de Génie des Procédés Université de Constantine 3, 25000 Constantine, Algeria)

  • Chetna Mohabeer

    (Laboratoire de Sécurité des Procédés Chimiques LSPC-4704, INSA Rouen, UNIROUEN, Normandie Univ., 76000 Rouen, France)

  • Taouk Bechara

    (Laboratoire de Sécurité des Procédés Chimiques LSPC-4704, INSA Rouen, UNIROUEN, Normandie Univ., 76000 Rouen, France)

Abstract

Thermogravimetric analysis was employed to investigate the combustion characteristics of flax shives, beech wood, hemicellulose, cellulose, lignin, and their chars. The chars were prepared from raw materials in a fixed-bed reactor at 850 °C. In this study, the thermal behavior based on characteristic temperatures (ignition, maximum, and final temperatures), burnout time and maximum rate was investigated. The kinetic parameters for the combustion of different materials were determined based on the Coats-Redfern approach. The results of our study revealed that the combustion of pure pseudo-components behaved differently from that of biomass. Indeed, principal component analysis showed that the thermal behavior of both biomasses was generally similar to that of pure hemicellulose. However, pure cellulose and lignin showed different behaviors compared to flax shives, beech wood, and hemicellulose. Hemicellulose and cellulose chars had almost the same behaviors, while being different from biomass and lignin chars. Despite the difference between flax shives and beech wood, they showed almost the same thermal characteristics and apparent activation energies. Also, the combustion of the hemicellulose and cellulose chars showed that they have almost the same structure. Their overall thermal and kinetic behavior remained between that of biomass and lignin.

Suggested Citation

  • Nourelhouda Boukaous & Lokmane Abdelouahed & Mustapha Chikhi & Abdeslam-Hassen Meniai & Chetna Mohabeer & Taouk Bechara, 2018. "Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study," Energies, MDPI, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2146-:d:164187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
    2. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    3. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    4. Kezhen Qian & Ajay Kumar & Krushna Patil & Danielle Bellmer & Donghai Wang & Wenqiao Yuan & Raymond L. Huhnke, 2013. "Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char," Energies, MDPI, vol. 6(8), pages 1-15, August.
    5. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    6. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    7. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Michele Moretti & Enrico Bocci, 2018. "Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study," Energies, MDPI, vol. 11(3), pages 1-19, March.
    8. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    9. Chamseddine Guizani & Mejdi Jeguirim & Sylvie Valin & Lionel Limousy & Sylvain Salvador, 2017. "Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity," Energies, MDPI, vol. 10(6), pages 1-18, June.
    10. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    11. Wang, Ze & Lin, Weigang & Song, Wenli & Wu, Xuexing, 2012. "Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor," Energy, Elsevier, vol. 43(1), pages 301-305.
    12. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2017. "Biomass in the generation of electricity in Portugal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 373-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Budzeń, Małgorzata & Zając, Grzegorz & Sujak, Agnieszka & Szyszlak-Bargłowicz, Joanna, 2021. "Energetic and thermal characteristics of Lavatera thuringiaca L. biomass of different age produced from He–Ne laser light stimulated seeds," Renewable Energy, Elsevier, vol. 178(C), pages 520-531.
    2. Li, Cong & Xu, Zixuan & Wang, Yuqing & Xu, Wenbo & Yang, Rui & Zhang, Hui, 2023. "Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source," Energy, Elsevier, vol. 265(C).
    3. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    3. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    4. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    5. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    6. Faleh, Nahla & Khila, Zouhour & Wahada, Zeineb & Pons, Marie-Noëlle & Houas, Ammar & Hajjaji, Noureddine, 2018. "Exergo-environmental life cycle assessment of biodiesel production from mutton tallow transesterification," Renewable Energy, Elsevier, vol. 127(C), pages 74-83.
    7. Jamaluddin, Muhammad 'Azim & Ismail, Khudzir & Mohd Ishak, Mohd Azlan & Ab Ghani, Zaidi & Abdullah, Mohd Fauzi & Safian, Muhammad Taqi-uddeen & Idris, Siti Shawalliah & Tahiruddin, Shawaluddin & Moham, 2013. "Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM)," Renewable Energy, Elsevier, vol. 55(C), pages 357-365.
    8. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    9. Małgorzata Wzorek & Robert Junga & Ersel Yilmaz & Bohdan Bozhenko, 2021. "Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    10. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    11. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    12. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    13. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    14. Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
    15. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    16. Manolis, E.N. & Zagas, T.D. & Karetsos, G.K. & Poravou, C.A., 2019. "Ecological restrictions in forest biomass extraction for a sustainable renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 290-297.
    17. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    18. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    19. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.
    20. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2146-:d:164187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.