IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p922-d140944.html
   My bibliography  Save this article

From Problems to Potentials—The Urban Energy Transition of Gruž, Dubrovnik

Author

Listed:
  • Andy Van den Dobbelsteen

    (Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Craig Lee Martin

    (Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Greg Keeffe

    (School of Natural and Built Environment, Queens University Belfast, University Road, Belfast BT7 1NN, UK)

  • Riccardo Maria Pulselli

    (Ecodynamics Group, University of Siena, Italy INDACO 2 , via Roma 21B int.3, 53034 Colle Val d’Elsa (Siena), Italy)

  • Han Vandevyvere

    (Unit Smart Energy & Built Environment, EnergyVille, Thor Park 8310, 3600 Genk, Belgium)

Abstract

In the challenge for a sustainable society, carbon-neutrality is a critical objective for all cities in the coming decades. In the EU City-zen project, academic partners collaborate to develop an urban energy transition methodology, which supports cities in making the energy transition to sustainable lifestyles and carbon neutrality. As part of the project, so-called Roadshows are organised in cities that wish to take the first step toward zero-energy living. Each Roadshow is methodologically composed to allow sustainability experts from across Europe to co-create designs, strategies and timelines with local stakeholders in order to reach this vital goal. Following a precursory investigative student workshop (the SWAT Studio), Dubrovnik was the third city to host the Roadshow in November 2016. During these events the characteristics of Dubrovnik, and the district of Gruž in particular, were systematically analysed, leading to useful insights into the current problems and potentials of the city. In close collaboration with local stakeholders, the team proposed a series of interventions, validated by the calculation of carbon emission, to help make Gruž, and in its wake the whole city of Dubrovnik, net zero energy and zero carbon. The vision presented to the inhabitants and its key city decision makers encompassed a path towards an attainable sustainable future. The strategies and solutions proposed for the Dubrovnik district of Gruž were able to reduce the current carbon sequestration compensation of 1200 hectares of forestland to only 67 hectares, an area achievable by urban reforestation projects. This paper presents the City-zen methodology of urban energy transition and that of the City-zen Roadshow, the analysis of the city of Dubrovnik, proposed interventions and the carbon impact, as calculated by means of the carbon accounting method discussed in the paper.

Suggested Citation

  • Andy Van den Dobbelsteen & Craig Lee Martin & Greg Keeffe & Riccardo Maria Pulselli & Han Vandevyvere, 2018. "From Problems to Potentials—The Urban Energy Transition of Gruž, Dubrovnik," Energies, MDPI, vol. 11(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:922-:d:140944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robinson, John Bridger, 1982. "Energy backcasting A proposed method of policy analysis," Energy Policy, Elsevier, vol. 10(4), pages 337-344, December.
    2. Brian Deal & Haozhi Pan & Varkki Pallathucheril & Gale Fulton, 2017. "Urban Resilience and Planning Support Systems: The Need for Sentience," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(1), pages 29-45, January.
    3. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    4. Doris Peručić & Barbara Puh, 2012. "Attitudes of citizens of Dubrovnik towards the impact of cruise tourism on Dubrovnik," Tourism and Hospitality Management, University of Rijeka, Faculty of Tourism and Hospitality Management, vol. 18(2), pages 213-228, December.
    5. Lin, Jianyi & Liu, Yuan & Meng, Fanxin & Cui, Shenghui & Xu, Lilai, 2013. "Using hybrid method to evaluate carbon footprint of Xiamen City, China," Energy Policy, Elsevier, vol. 58(C), pages 220-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lekavičius, Vidas & Galinis, Arvydas & Miškinis, Vaclovas, 2019. "Long-term economic impacts of energy development scenarios: The role of domestic electricity generation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Matteo Maccanti & Romina D’Ascanio & Federica Di Pietrantonio & Michela Marchi & Jesús Vargas Molina & Riccardo Maria Pulselli & Andrea Poldrugovac & Diane Schembri Cassar & Lorenzo Barbieri & Josefin, 2023. "Learning-by-Doing Methodology towards Urban Decarbonisation: An Application in Valletta (Malta)," Sustainability, MDPI, vol. 15(7), pages 1-28, March.
    3. Pulselli, Riccardo Maria & Broersma, Siebe & Martin, Craig Lee & Keeffe, Greg & Bastianoni, Simone & van den Dobbelsteen, Andy, 2021. "Future city visions. The energy transition towards carbon-neutrality: lessons learned from the case of Roeselare, Belgium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Nick ten Caat & Luuk Graamans & Martin Tenpierik & Andy van den Dobbelsteen, 2021. "Towards Fossil Free Cities—A Supermarket, Greenhouse & Dwelling Integrated Energy System as an Alternative to District Heating: Amsterdam Case Study," Energies, MDPI, vol. 14(2), pages 1-33, January.
    5. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    2. World Bank, 2012. "Air Transport and Energy Efficiency," World Bank Publications - Reports 16805, The World Bank Group.
    3. repec:cup:judgdm:v:11:y:2016:i:2:p:147-167 is not listed on IDEAS
    4. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    5. Fuyuan Wang & Kaiyong Wang, 2017. "Assessing the Effect of Eco-City Practices on Urban Sustainability Using an Extended Ecological Footprint Model: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 9(9), pages 1-16, September.
    6. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    7. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    8. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    9. Justin Longo & Alan Rodney Dobell, 2018. "The Limits of Policy Analytics: Early Examples and the Emerging Boundary of Possibilities," Politics and Governance, Cogitatio Press, vol. 6(4), pages 5-17.
    10. Markus Robèrt & Daniel Jonsson R., 2005. "Assessment of Policy Instruments Toward a Sustainable Traffic System -A backcasting approach for Stockhom 2030," ERSA conference papers ersa05p170, European Regional Science Association.
    11. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    13. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.
    14. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    15. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    16. Cho, Yonghee & Yoon, Seong-Pil & Kim, Karp-Soo, 2016. "An industrial technology roadmap for supporting public R&D planning," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 1-12.
    17. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    18. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    19. Ana Louro & Nuno Marques da Costa & Eduarda Marques da Costa, 2019. "Sustainable Urban Mobility Policies as a Path to Healthy Cities—The Case Study of LMA, Portugal," Sustainability, MDPI, vol. 11(10), pages 1-32, May.
    20. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    21. Mauleón, Ignacio, 2019. "Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:922-:d:140944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.