IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p617-d135627.html
   My bibliography  Save this article

Accounting for Energy Cost When Designing Energy-Efficient Wireless Access Networks

Author

Listed:
  • Greta Vallero

    (Department of Electronics and Telecommunications (DET), Polytechnic University of Turin, 10129 Turin, Italy)

  • Margot Deruyck

    (Department of Information Technology, Ghent University/IMEC-WAVES, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium)

  • Michela Meo

    (Department of Electronics and Telecommunications (DET), Polytechnic University of Turin, 10129 Turin, Italy)

  • Wout Joseph

    (Department of Information Technology, Ghent University/IMEC-WAVES, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium)

Abstract

Because of the increase of the data traffic demand, wireless access networks, through which users access telecommunication services, have expanded, in terms of size and of capability and, consequently, in terms of power consumption. Therefore, costs to buy the necessary power for the supply of base stations of those networks is becoming very high, impacting the communication cost. In this study, strategies to reduce the amount of money spent for the purchase of the energy consumed by the base stations are proposed for a network powered by solar panels, energy batteries and the power grid. First, the variability of the energy prices is exploited. It provides a cost reduction of up to 30%, when energy is bought in advance. If a part of the base stations is deactivated when the energy price is higher than a given threshold, a compromise between the energy cost and the user coverage drop is needed. In the simulated scenario, the necessary energy cost can be reduced by more than 40%, preserving the user coverage by greater than 94%. Second, the network is introduced to the energy market: it buys and sells energy from/to the traditional power grid. Finally, costs are reduced by the reduction of power consumption of the network, achieved by using microcell base stations. In the considered scenario, up to a 31% cost reduction is obtained, without the deterioration of the quality of service, but a huge Capex expenditure is required.

Suggested Citation

  • Greta Vallero & Margot Deruyck & Michela Meo & Wout Joseph, 2018. "Accounting for Energy Cost When Designing Energy-Efficient Wireless Access Networks," Energies, MDPI, vol. 11(3), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:617-:d:135627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aoife Brophy Haney & Tooraj Jamasb & Laura M. Platchkov & Michael G. Pollitt, 2010. "Demand-side Management Strategies and the Residential Sector: Lessons from International Experience," Working Papers EPRG 1034, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Yan & Chien Aun Chan & André F. Gygax & Jinyao Yan & Leith Campbell & Ampalavanapillai Nirmalathas & Christopher Leckie, 2019. "Modeling the Total Energy Consumption of Mobile Network Services and Applications," Energies, MDPI, vol. 12(1), pages 1-18, January.
    2. Shornalatha Euttamarajah & Yin Hoe Ng & Chee Keong Tan, 2021. "Energy-Efficient Joint Base Station Switching and Power Allocation for Smart Grid Based Hybrid-Powered CoMP-Enabled HetNet," Future Internet, MDPI, vol. 13(8), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Platchkov & Michael G. Pollitt & David Reiner & Irina Shaorshadze, 2011. "2010 EPRG Public Opinion Survey: Policy Preferences and Energy Saving Measures," Working Papers EPRG 1122, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Andaluz-Alcazar, Alvaro, 2012. "Choix d'investissement sous incertitude des gestionnaires des réseaux de distribution (GRD) en Europe à l'horizon 2030," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/10862 edited by Keppler, Jan Horst.
    3. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    4. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    5. Igor Bayev & Irina Solovyeva & Anatoliy Dzyuba, 2018. "Cost-Effective Management of Electricity Transmission in an Industrial Region," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 955-969.
    6. Sousa, José Luís & Martins, António Gomes & Jorge, Humberto, 2013. "Dealing with the paradox of energy efficiency promotion by electric utilities," Energy, Elsevier, vol. 57(C), pages 251-258.
    7. Sousa, José L. & Martins, António G. & Jorge, Humberto M., 2013. "World-wide non-mandatory involvement of electricity utilities in the promotion of energy efficiency and the Portuguese experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 319-331.
    8. Rangoni, Bernardo, 2012. "A contribution on electricity storage: The case of hydro-pumped storage appraisal and commissioning in Italy and Spain," Utilities Policy, Elsevier, vol. 23(C), pages 31-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:617-:d:135627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.