IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p395-d130903.html
   My bibliography  Save this article

Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting

Author

Listed:
  • Nivine Attoue

    (Laboratory of Civil Engineering and Geo-Environment, Lille University, 59650 Villeneuve d’Ascq, France)

  • Isam Shahrour

    (Laboratory of Civil Engineering and Geo-Environment, Lille University, 59650 Villeneuve d’Ascq, France
    School of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Rafic Younes

    (Modeling Center, Lebanese University, Hadath 99000, Lebanon)

Abstract

The smart building concept aims to use smart technology to reduce energy consumption, as well as to improve comfort conditions and users’ satisfaction. It is based on the use of smart sensors and software to follow both outdoor and indoor conditions for the control of comfort, and security devices for the optimization of energy consumption. This paper presents a data-based model for indoor temperature forecasting, which could be used for the optimization of energy device use. The model is based on an artificial neural network (ANN), which is validated on data recorded in an old building. The novelty of this work consists of the methodology proposed for the development of a simplified model for indoor temperature forecasting. This methodology is based on the selection of pertinent input parameters after a relevance analysis of a large set of input parameters, including solar radiation outdoor temperature history, outdoor humidity, indoor facade temperature, and humidity. It shows that an ANN-based model using outdoor and facade temperature sensors provides good forecasting of indoor temperatures. This model can be easily used in the optimal regulation of buildings’ energy devices.

Suggested Citation

  • Nivine Attoue & Isam Shahrour & Rafic Younes, 2018. "Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting," Energies, MDPI, vol. 11(2), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:395-:d:130903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
    2. Shaker Zabada & Isam Shahrour, 2017. "Analysis of Heating Expenses in a Large Social Housing Stock Using Artificial Neural Networks," Energies, MDPI, vol. 10(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abraham Kaligambe & Goro Fujita & Tagami Keisuke, 2022. "Estimation of Unmeasured Room Temperature, Relative Humidity, and CO 2 Concentrations for a Smart Building Using Machine Learning and Exploratory Data Analysis," Energies, MDPI, vol. 15(12), pages 1-12, June.
    2. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    3. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    4. Rasa Džiugaitė-Tumėnienė & Rūta Mikučionienė & Giedrė Streckienė & Juozas Bielskus, 2021. "Development and Analysis of a Dynamic Energy Model of an Office Using a Building Management System (BMS) and Actual Measurement Data," Energies, MDPI, vol. 14(19), pages 1-24, October.
    5. Mohd. Ahmed & Saeed AlQadhi & Javed Mallick & Nabil Ben Kahla & Hoang Anh Le & Chander Kumar Singh & Hoang Thi Hang, 2022. "Artificial Neural Networks for Sustainable Development of the Construction Industry," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    6. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    7. Muhammad Ali & Krishneel Prakash & Carlos Macana & Ali Kashif Bashir & Alireza Jolfaei & Awais Bokhari & Jiří Jaromír Klemeš & Hemanshu Pota, 2022. "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-16, March.
    8. Petri Hietaharju & Mika Ruusunen & Kauko Leiviskä, 2018. "A Dynamic Model for Indoor Temperature Prediction in Buildings," Energies, MDPI, vol. 11(6), pages 1-20, June.
    9. Xike Zhang & Qiuwen Zhang & Gui Zhang & Zhiping Nie & Zifan Gui & Huafei Que, 2018. "A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 15(5), pages 1-23, May.
    10. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    11. David Bienvenido-Huertas & Carlos Rubio-Bellido & Juan Luis Pérez-Ordóñez & Fernando Martínez-Abella, 2019. "Estimating Adaptive Setpoint Temperatures Using Weather Stations," Energies, MDPI, vol. 12(7), pages 1-47, March.
    12. Feng Xu & Kei Sakurai & Yuki Sato & Yuka Sakai & Shunsuke Sabu & Hiroaki Kanayama & Daisuke Satou & Yasuki Kansha, 2023. "Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions," Energies, MDPI, vol. 16(6), pages 1-13, March.
    13. Juan Botero-Valencia & Luis Castano-Londono & David Marquez-Viloria, 2022. "Indoor Temperature and Relative Humidity Dataset of Controlled and Uncontrolled Environments," Data, MDPI, vol. 7(6), pages 1-15, June.
    14. Kefan Huang & Kevin P. Hallinan & Robert Lou & Abdulrahman Alanezi & Salahaldin Alshatshati & Qiancheng Sun, 2020. "Self-Learning Algorithm to Predict Indoor Temperature and Cooling Demand from Smart WiFi Thermostat in a Residential Building," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    15. Byung Kyu Park & Charn-Jung Kim, 2023. "Short-Term Prediction for Indoor Temperature Control Using Artificial Neural Network," Energies, MDPI, vol. 16(23), pages 1-17, November.
    16. Song, Jiancai & Bian, Tianxiang & Xue, Guixiang & Wang, Hanyu & Shen, Xingliang & Wu, Xiangdong, 2023. "Short-term forecasting model for residential indoor temperature in DHS based on sequence generative adversarial network," Applied Energy, Elsevier, vol. 348(C).
    17. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    2. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    3. Deihimi, Ali & Showkati, Hemen, 2012. "Application of echo state networks in short-term electric load forecasting," Energy, Elsevier, vol. 39(1), pages 327-340.
    4. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    5. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    6. Milad Bagheri & Zelina Z. Ibrahim & Mohd Fadzil Akhir & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour & Wan Izatul Asma Wan Talaat, 2021. "Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia," Land, MDPI, vol. 10(12), pages 1-24, December.
    7. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    8. Rehman, Shafiqur & Mohandes, Mohamed, 2008. "Artificial neural network estimation of global solar radiation using air temperature and relative humidity," Energy Policy, Elsevier, vol. 36(2), pages 571-576, February.
    9. Abdel-Aal, R.E. & Elhadidy, M.A. & Shaahid, S.M., 2009. "Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks," Renewable Energy, Elsevier, vol. 34(7), pages 1686-1699.
    10. Almonacid, F. & Pérez-Higueras, P. & Rodrigo, P. & Hontoria, L., 2013. "Generation of ambient temperature hourly time series for some Spanish locations by artificial neural networks," Renewable Energy, Elsevier, vol. 51(C), pages 285-291.
    11. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    12. Anamika, & Peesapati, Rajagopal & Kumar, Niranjan, 2016. "Estimation of GSR to ascertain solar electricity cost in context of deregulated electricity markets," Renewable Energy, Elsevier, vol. 87(P1), pages 353-363.
    13. Paniagua-Tineo, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Ortiz-García, E.G. & Cony, M.A. & Hernández-Martín, E., 2011. "Prediction of daily maximum temperature using a support vector regression algorithm," Renewable Energy, Elsevier, vol. 36(11), pages 3054-3060.
    14. Jiang, Yingni, 2009. "Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models," Energy, Elsevier, vol. 34(9), pages 1276-1283.
    15. David Bienvenido-Huertas & Carlos Rubio-Bellido & Juan Luis Pérez-Ordóñez & Fernando Martínez-Abella, 2019. "Estimating Adaptive Setpoint Temperatures Using Weather Stations," Energies, MDPI, vol. 12(7), pages 1-47, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:395-:d:130903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.