IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3113-d181970.html
   My bibliography  Save this article

A Novel Method for Economic Dispatch of Combined Heat and Power Generation

Author

Listed:
  • Bach Hoang Dinh

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Thang Trung Nguyen

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Nguyen Vu Quynh

    (Department of Electrical Engineering, Lac Hong University, Bien Hoa 810000, Vietnam)

  • Le Van Dai

    (Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
    Office of Science Research and Development, Lac Hong University, Bien Hoa 810000, Vietnam)

Abstract

The paper proposes a modified Bat algorithm (MBA) for searching optimal solutions of Economic dispatch of combined heat and power generation (CHPGED) with the heat and power generation from three different types of units consisting of pure power generation units, pure heat generation units and cogeneration units. The CHPGED problem becomes complicated and big challenge to optimization tools since it considers both heat and power generation from cogeneration units. Thus, we apply MBA method with the purpose of enhancing high quality solution search ability as well as search speed of conventional Bat algorithm (BA). This proposed approach is established based on three modifications on BA. The first is the adaptive frequency adjustment, the second is the optimal range of updated velocity, and the third is the retained condition of a good solution with objective to ameliorate the search performance of traditional BA. The effectiveness of the proposed approach is evaluated by testing on 7, 24, and 48 units systems and IEEE 14-bus system and comparing results with BA together with other existing methods. As a result, it can conclude that the proposed MBA method is a favorable meta-heuristic algorithm for solving CHPGED problem.

Suggested Citation

  • Bach Hoang Dinh & Thang Trung Nguyen & Nguyen Vu Quynh & Le Van Dai, 2018. "A Novel Method for Economic Dispatch of Combined Heat and Power Generation," Energies, MDPI, vol. 11(11), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3113-:d:181970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
    2. Nikolaos Kalantzis & Antonios Pezouvanis & Kambiz M. Ebrahimi, 2017. "Internal Combustion Engine Model for Combined Heat and Power (CHP) Systems Design," Energies, MDPI, vol. 10(12), pages 1-14, November.
    3. Alfredo Gimelli & Massimiliano Muccillo, 2018. "The Key Role of the Vector Optimization Algorithm and Robust Design Approach for the Design of Polygeneration Systems," Energies, MDPI, vol. 11(4), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunhai Zhou & Shengkai Guo & Fei Xu & Dai Cui & Weichun Ge & Xiaodong Chen & Bo Gu, 2020. "Multi-Time Scale Optimization Scheduling Strategy for Combined Heat and Power System Based on Scenario Method," Energies, MDPI, vol. 13(7), pages 1-18, April.
    2. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    3. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    4. Siqing Sheng & Qing Gu, 2019. "A Day-ahead and Day-in Decision Model Considering the Uncertainty of Multiple Kinds of Demand Response," Energies, MDPI, vol. 12(9), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinay Kumar Jadoun & G. Rahul Prashanth & Siddharth Suhas Joshi & Anshul Agarwal & Hasmat Malik & Majed A. Alotaibi & Abdulaziz Almutairi, 2021. "Optimal Scheduling of Non-Convex Cogeneration Units Using Exponentially Varying Whale Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-30, February.
    2. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    3. Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
    4. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    5. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    6. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    7. Moghaddam, Iman Gerami & Saniei, Mohsen & Mashhour, Elaheh, 2016. "A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building," Energy, Elsevier, vol. 94(C), pages 157-170.
    8. Zhao Luo & Wei Gu & Yong Sun & Xiang Yin & Yiyuan Tang & Xiaodong Yuan, 2016. "Performance Analysis of the Combined Operation of Interconnected-BCCHP Microgrids in China," Sustainability, MDPI, vol. 8(10), pages 1-20, September.
    9. Lenin Kanagasabai, 2022. "Real power loss reduction by Q-learning and hyper-heuristic method," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1607-1622, August.
    10. Shi, Bin & Yan, Lie-Xiang & Wu, Wei, 2013. "Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction," Energy, Elsevier, vol. 56(C), pages 135-143.
    11. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for large scale CHPED problem," Energy, Elsevier, vol. 126(C), pages 841-853.
    12. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    13. Niknam, Taher & Mojarrad, Hassan Doagou & Nayeripour, Majid, 2010. "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch," Energy, Elsevier, vol. 35(4), pages 1764-1778.
    14. Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
    15. Narges Daryani & Sajjad Tohidi, 2019. "Economic dispatch of multi-carrier energy systems considering intermittent resources," Energy & Environment, , vol. 30(2), pages 341-362, March.
    16. Pruitt, Kristopher A. & Braun, Robert J. & Newman, Alexandra M., 2013. "Establishing conditions for the economic viability of fuel cell-based, combined heat and power distributed generation systems," Applied Energy, Elsevier, vol. 111(C), pages 904-920.
    17. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    18. Hosseini, Seyyed Soheil Sadat & Gandomi, Amir Hossein, 2010. "Discussion on "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm, by P. Subbaraj et al., Applied Energy 86 (2009) 915-921."," Applied Energy, Elsevier, vol. 87(4), pages 1459-1459, April.
    19. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    20. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3113-:d:181970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.