IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1255-d109410.html
   My bibliography  Save this article

Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp

Author

Listed:
  • Joanna Berlowska

    (Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Katarzyna Pielech-Przybylska

    (Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Maria Balcerek

    (Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Weronika Cieciura

    (Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Sebastian Borowski

    (Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

  • Dorota Kregiel

    (Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland)

Abstract

Large amounts of waste biomass are generated in sugar factories from the processing of sugar beets. After diffusion with hot water to draw the sugar from the beet pieces, a wet material remains called pulp. In this study, waste sugar beet pulp biomass was enzymatically depolymerized, and the obtained hydrolyzates were subjected to fermentation processes. Bioethanol, biomethane, and biohydrogen were produced directly from the substrate or in combined mode. Stillage, a distillery by-product, was used as a feedstock for anaerobic digestion. During biosynthesis of ethanol, most of the carbohydrates released from the sugar beet pulp were utilized by a co-culture of Saccharomyces cerevisiae Ethanol Red, and Scheffersomyces stipitis LOCK0047 giving 12.6 g/L of ethanol. Stillage containing unfermented sugars (mainly arabinose, galactose and raffinose) was found to be a good substrate for methane production (444 dm 3 CH 4 /kg volatile solids (VS)). Better results were achieved with this medium than with enzymatic saccharified biomass. Thermal pre-treatment and adjusting the pH of the inoculum resulted in higher hydrogen production. The largest ( p < 0.05) hydrogen yield (252 dm 3 H 2 /kg VS) was achieved with sugar beet stillage (SBS). In contrast, without pre-treatment the same medium yielded 35 dm 3 H 2 /kg VS. However, dark fermentation of biohydrogen was more efficient when sugar beet pulp hydrolyzate was used.

Suggested Citation

  • Joanna Berlowska & Katarzyna Pielech-Przybylska & Maria Balcerek & Weronika Cieciura & Sebastian Borowski & Dorota Kregiel, 2017. "Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp," Energies, MDPI, vol. 10(9), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1255-:d:109410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
    2. Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo & Søren Ugilt Larsen & Kasper Stefanek & Sven G. Sommer, 2016. "Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids," Energies, MDPI, vol. 9(5), pages 1-11, May.
    3. Liu, Yunyun & Xu, Jingliang & Zhang, Yu & Yuan, Zhenhong & He, Minchao & Liang, Cuiyi & Zhuang, Xinshu & Xie, Jun, 2015. "Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF," Energy, Elsevier, vol. 90(P1), pages 1199-1205.
    4. Patel, Harshvadan & Chapla, Digantkumar & Shah, Amita, 2017. "Bioconversion of pretreated sugarcane bagasse using enzymatic and acid followed by enzymatic hydrolysis approaches for bioethanol production," Renewable Energy, Elsevier, vol. 109(C), pages 323-331.
    5. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
    6. Carsten Herbes & Lorenz Braun & Dennis Rube, 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies," Energies, MDPI, vol. 9(4), pages 1-15, March.
    7. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    2. Weronika Cieciura-Włoch & Michał Binczarski & Jolanta Tomaszewska & Sebastian Borowski & Jarosław Domański & Piotr Dziugan & Izabela Witońska, 2019. "The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen," Energies, MDPI, vol. 12(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Narisetty, Vivek & Narisetty, Sudheera & Jacob, Samuel & Kumar, Deepak & Leeke, Gary A. & Chandel, Anuj Kumar & Singh, Vijai & Srivastava, Vimal Chandra & Kumar, Vinod, 2022. "Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii," Renewable Energy, Elsevier, vol. 191(C), pages 394-404.
    3. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    4. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    5. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    6. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    7. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    8. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    9. Andrzej Baryga & Rafał Ziobro & Dorota Gumul & Justyna Rosicka-Kaczmarek & Karolina Miśkiewicz, 2023. "Physicochemical Properties and Evaluation of Antioxidant Potential of Sugar Beet Pulp—Preliminary Analysis for Further Use (Future Prospects)," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
    10. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).
    11. Kim, Hyo-Jin & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "Social acceptance of offshore wind energy development in South Korea: Results from a choice experiment survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    14. Przemysław Liczbiński & Sebastian Borowski, 2021. "Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production," Energies, MDPI, vol. 14(18), pages 1-9, September.
    15. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    16. Lillian Hansen & Hilde Bjørkhaug, 2017. "Visions and Expectations for the Norwegian Bioeconomy," Sustainability, MDPI, vol. 9(3), pages 1-17, February.
    17. de Moraes Dutenkefer, Raphael & de Oliveira Ribeiro, Celma & Morgado Mutran, Victoria & Eduardo Rego, Erik, 2018. "The insertion of biogas in the sugarcane mill product portfolio: A study using the robust optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 729-740.
    18. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
    19. Mads Ujarak Sieborg & Brian Dahl Jønson & Søren Ugilt Larsen & Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo, 2020. "Co-Ensiling of Wheat Straw as an Alternative Pre-Treatment to Chemical, Hydrothermal and Mechanical Methods for Methane Production," Energies, MDPI, vol. 13(16), pages 1-19, August.
    20. Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1255-:d:109410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.