IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1204-d108255.html
   My bibliography  Save this article

A Multi-Objective Optimization Approach for Corrective Switching of Transmission Systems in Emergency Scenarios

Author

Listed:
  • Xin Xu

    (Key Laboratory of Power System Intelligent Dispatch and Control of the Ministry of Education, Shandong University, Jinan 250061, China)

  • Yongji Cao

    (Key Laboratory of Power System Intelligent Dispatch and Control of the Ministry of Education, Shandong University, Jinan 250061, China)

  • Hengxu Zhang

    (Key Laboratory of Power System Intelligent Dispatch and Control of the Ministry of Education, Shandong University, Jinan 250061, China)

  • Shiying Ma

    (China Electric Power Research Institute, Beijing 100192, China)

  • Yunting Song

    (China Electric Power Research Institute, Beijing 100192, China)

  • Dezhi Chen

    (China Electric Power Research Institute, Beijing 100192, China)

Abstract

The large capacity transmission of power over long distance and the rapid development of renewable energy increase the probability of unexpected emergencies such as overload and under-voltage. To tackle these emergencies and defend future disturbances, the corrective switching is implemented as an online control and a multi-objective scheme-making approach is proposed. A multi-objective 0-1 integer optimization model is established to cover a set of contradictory objectives from the aspects of economics, security and reliability. A two-phase optimization approach is proposed to ensure computation efficiency and coordinate the trade-off between these objectives: in the first phase, a feasible set silting method is utilized to quickly search for a set of candidate corrective switching schemes; in the second phase, the technique for order preference by similarity to an ideal solution (TOPSIS) method is applied to the candidate set to coordinate the contradictory objectives and determine the ultimate engineering scheme. Two case studies are conducted to verify the proposed approach in overload and under-voltage scenarios. The results are discussed to show the strengths when the performance indices of economics, security and reliability are considered.

Suggested Citation

  • Xin Xu & Yongji Cao & Hengxu Zhang & Shiying Ma & Yunting Song & Dezhi Chen, 2017. "A Multi-Objective Optimization Approach for Corrective Switching of Transmission Systems in Emergency Scenarios," Energies, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1204-:d:108255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ho-Young Kim & Mun-Kyeom Kim & San Kim, 2017. "Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms wit," Energies, MDPI, vol. 10(7), pages 1-21, July.
    2. Mahesh Kumar & Perumal Nallagownden & Irraivan Elamvazuthi, 2017. "Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems," Energies, MDPI, vol. 10(6), pages 1-25, June.
    3. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Toctaquiza & Diego Carrión & Manuel Jaramillo, 2023. "An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    2. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    3. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    4. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    5. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    6. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Sheida Abdoli & Farah Habib & Mohammad Babazadeh, 2018. "Making spatial development scenario for south of Bushehr province, Iran, based on strategic foresight," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1293-1309, June.
    8. Shannon Li & Anne Honey & Francesca Coniglio & Peter Schaecken, 2022. "Mental Health Peer Worker Perspectives on Resources Developed from Lived Experience Research Findings: A Delphi Study," IJERPH, MDPI, vol. 19(7), pages 1-15, March.
    9. Chandrasekaran Venkatesan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems," Sustainability, MDPI, vol. 13(6), pages 1-34, March.
    10. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    11. Petreski Marjan & Petreski Blagica & Tumanoska Despina & Narazani Edlira & Kazazi Fatush & Ognjanov Galjina & Jankovic Irena & Mustafa Arben & Kochovska Tereza, 2017. "The Size and Effects of Emigration and Remittances in the Western Balkans. A Forecasting Based on a Delphi Process," Comparative Southeast European Studies, De Gruyter, vol. 65(4), pages 679-695, December.
    12. Chen, Peng-Ting & Cheng, Joe Z. & Yu, Ya-Wen & Ju, Pei-Hung, 2014. "Mobile advertising setting analysis and its strategic implications," Technology in Society, Elsevier, vol. 39(C), pages 129-141.
    13. F Ackermann & C Eden & T Williams & S Howick, 2007. "Systemic risk assessment: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 39-51, January.
    14. Ti-An Chen, 2022. "Business Performance Evaluation for Tourism Factory: Using DEA Approach and Delphi Method," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    15. Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
    16. Christoph Markmann & Alexander Spickermann & Heiko A. von der Gracht & Alexander Brem, 2021. "Improving the question formulation in Delphi‐like surveys: Analysis of the effects of abstract language and amount of information on response behavior," Futures & Foresight Science, John Wiley & Sons, vol. 3(1), March.
    17. Patricia Tucker & Brianne A. Bruijns & Kristi B. Adamo & Shauna M. Burke & Valerie Carson & Rachel Heydon & Jennifer D. Irwin & Andrew M. Johnson & Patti-Jean Naylor & Brian W. Timmons & Leigh M. Vand, 2022. "Training Pre-Service Early Childhood Educators in Physical Activity (TEACH): Protocol for a Quasi-Experimental Study," IJERPH, MDPI, vol. 19(7), pages 1-27, March.
    18. Acosta, Hernando & Wu, Dongrui & Forrest, Barrie M., 2010. "Fuzzy experts on recreational vessels, a risk modelling approach for marine invasions," Ecological Modelling, Elsevier, vol. 221(5), pages 850-863.
    19. Chun, JongSerl & Kim, Jinyung & Lee, Serim, 2023. "Development of a cyberbullying victimization scale for adolescents in South Korea," Children and Youth Services Review, Elsevier, vol. 144(C).
    20. Haarhaus, Tim & Liening, Andreas, 2020. "Building dynamic capabilities to cope with environmental uncertainty: The role of strategic foresight," Technological Forecasting and Social Change, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1204-:d:108255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.